

Investigations

on the logical aspects of ecosystems

for programmers in Lingua-V
(a working version)

Andrzej Jacek Blikle

October 4th, 2025

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 2

Contents
1 Introduction ... 3
2 Preliminaries ... 4

2.1 Introductory remarks about an ecosystem for Lingua-V programmers ... 4
2.2 An example of a program development .. 5
2.3 A recollection on first-order and second-order formalized theories ... 9
2.4 Formalized theories in an algebraic framework ... 15
2.5 Formalized Peano’s arithmetic .. 21

3 Formalizing Lingua-V ... 24
3.1 The grammar of Lingua-V .. 24
3.2 The denotations of Lingua-V ... 25

4 Defining Lingua-D ... 26
4.1 Individual variables in Lingua-D .. 26
4.2 Functional and predicational variables in Lingua-D .. 26
4.3 Terms in Lingua-D ... 26
4.4 Formulas in Lingua-D .. 28
4.5 The denotations of Lingua-D ... 29

5 A formalized theory of the denotations of Lingua-V ... 31
5.1 The structure of the theory .. 31
5.2 Denotation-oriented axioms ... 31

5.2.1 Program-independent axioms for metaconditions .. 31
5.2.2 Axioms corresponding to behavioral metaconditions ... 32
5.2.3 Axioms corresponding to temporal metaconditions .. 33
5.2.4 Axioms corresponding to declarations .. 33
5.2.5 @-axiom .. 34
5.2.6 Some standard implicative axioms ... 34
5.2.7 Implicative axioms for structural instructions .. 35

5.3 Inference rules ... 35
5.3.1 Program-building rules versus inference rules ... 35
5.3.2 Universal inference rules .. 37
5.3.3 Not all construction rules are expressible as axioms .. 38
5.3.4 Standard inference rules ... 39
5.3.5 Nonstandard inference rules ... 39

5.3.5.1 Assignment-instruction inference rule .. 39
5.3.5.2 The removal of an assertion ... 41
5.3.5.3 The replacement of a condition in an assertion by a weakly equivalent one ... 41
5.3.5.4 The call of an imperative procedure ... 41

6 Denotational models of ecosystems .. 43
6.1 Primary and secondary ecosystems ... 43
6.2 Repositories and actions ... 43
6.3 Carriers of the algebra of denotations ... 44
6.4 Constructors of the algebra of denotations ... 44

6.4.1 Auxiliary functions ... 44
6.4.2 Constructors of substitution vectors .. 44
6.4.3 Constructors of basic actions .. 45

6.4.3.1 Substitution actions .. 45
6.4.3.2 Detachment actions .. 46

6.4.4 Constructors of standard actions .. 46
6.4.4.1 Strengthening-precondition action .. 46
6.4.4.2 Adding irrelevant conditions ... 47

6.4.5 Constructors of nonstandard actions .. 48
6.4.5.1 Assignment-creation action .. 48
6.4.5.2 Proving action ... 49

6.5 An example of a program’s derivation ― bubble sort ... 49
6.6 A hybrid scenario of the development of prime repositories ... 52

7 A comparison of Lingua-V with Dafny .. 53
8 References ... 55

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 3

1 Introduction

This paper is addressed to readers familiar with the techniques of validating programming originated by Andrzej

Blikle at the turn of the 1970s and 1980s (see [2], [3], [4], and [5]) and currently explored on a theoretical basis

in the Lingua project [6]. From the perspective of the pursued goal, this approach is similar to the idea of devel-

oping programs that are correct-by-construction suggested by Edsger Dijkstra in the years 1969/70 (see [7] and

[8]), and currently elaborated in the Dafny project (see [11], [10], [9] and [10]). Both these approaches share the

idea that a program should be developed in a step-by-step process where each step guarantees the correctness of

the current program. In both methods, a program (syntactically) includes its specification in the form of pre- and

postconditions, along with some internal assertions. However, technically and mathematically, these approaches

are significantly different.

The technical core of the Lingua project is a virtual (so far) programming language Lingua-V (V for “vali-

dating”), which includes a “standard” (also virtual) programming language Lingua, plus its extension by met-

aprograms. The latter syntactically consist of Lingua programs plus their specifications. A metaprogram is said

to be correct if its program component is totally correct with clean termination (generates no errors) for its spec-

ification.

The category of correct metaprograms constitutes a special case of a category of valid metaconditions. The

latter are developed from other correct metaconditions through construction rules that include proof rules in

Dijkstra’s style (but with three-valued predicates) plus some additional rules. Based on a denotational model of

Lingua-V, these rules are proven sound, meaning that given valid metaconditions as inputs, they return valid

metaconditions as outputs. It is essential to emphasize in this place that the development of correct metaprograms

can’t be described as a process where we build exclusively metaprograms from other metaprograms. As has been

shown in Sec. 9 of [6], arbitrary metaconditions must be included in this game.

The primary mathematical difference between the Lingua and Dafny projects is that Lingua has a denotational

model (semantics), and on this basis, we prove the soundness of our construction rules. In the Dafny project,

only the syntax is formally defined, and program-construction rules are essentially assumed to be sound. On

the other hand, it is worth noting that Dafny offers an implemented language. More about the differences between

these two approaches can be found in Sec. 7

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 4

2 Preliminaries

2.1 Introductory remarks about an ecosystem for Lingua-V programmers

An ecosystem for Lingua-V programmers should help them create correct metaprograms and, in fact, valid met-

aconditions. We assume that the latter will be developed in a bottom-up manner, starting with some previously

created valid metaconditions, i.e.:

• correct metaprograms,

• correct metadeclarations,

• correct metainstructions,

• other valid metaconditions,

and combining or transforming them into new valid metaconditions using sound construction rules. An ecosystem

including the following components will support the work of programmers in Lingua-V:

• a repository dedicated to storing:

o valid metaconditions and, in particular, the axioms of a formalized theory of denotations, a D-

theory, based on a formalized language Lingua-D,

o sound program-construction rules,

o conditions,

• an engine, to construct new valid metaconditions, including:

o an intelligent text editor with a Lingua-D parser to ensure the syntactical correctness of created

metaconditions,

o a composer providing procedures, called actions, for creating new valid metaconditions from the

ones stored in the repository,

o a theorem prover to prove the validity of these metaconditions that can’t be generated by the com-

poser.

Fig. 2.1-1 An ecosystem for programmers

Storing conditions in the repository serves as a technical vehicle, enabling programmers to use concise names for

complex conditions during program development (see Sec. 6.5 for examples).

We assume that the ecosystem will be dynamically developed by two categories of users:

• programmers ― using the current repository to derive new metacomponents out of previously stored,

• superusers ― authorized to add new axioms and new construction rules to the repository and to update

the text editor whenever Lingua-D is enriched.

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 5

Developing correct metaprograms within an ecosystem can be seen as proving the validity of formulas in D-

theory. This theory will be formalized as a triple consisting of:

• a formalized language Lingua-D derived from (including) the source language Lingua-V,

• a set of axioms, i.e., formulas written Lingua-D,

• a set of classical inference rules (substitution, detachment, etc.) along with some rules specific to the

underlying language Lingua-D.

In this paper, we investigate the general problem of developing a formalized theory for a programming language

with a denotational model. We shall illustrate our proposed solution by developing Lingua-D and D-theory for

Lingua-V. Still, we will also try to formulate some general recommendations applicable to a class of languages

with denotational models.

To discuss the main subjects of our investigations — i.e., Lingua-D and D-theory — we will need a metalan-

guage and a corresponding metatheory. We take MetaSoft as the former, and our metatheory will encompass all

mathematical theories used in [6], i.e., set theory, the theory of relations, the theory of formal languages, and the

theory of CPOs, among others. We will refer to it as M-theory, and (so far?), we shall not formalize it.

The last language we will introduce in this paper is Lingua-E, which will represent the ecosystem itself. It will

include procedures, referred to as actions.

Summing up, on our way from Lingua to an ecosystem, we shall investigate and develop a hierarchy of lan-

guages ― all of them with denotational models:

• Lingua ― a source programming language,

• Lingua-V ― a language of validating programming; an extension of Lingua,

• Lingua-D ― a language of a formalized theory of the denotations of Lingua-V,

• Lingua-E ― a language of actions executed by the ecosystem.

At the end of this section, one methodological remark is in order about the development of correct metaprograms

in our approach. The development of correct metaprograms, and in general valid metaconditions, may be seen as

proving theorems in D-theory. This task can be conducted in two regimes:

• ex-ante constructive proofs ― when we use a composer to build valid metaconditions from earlier proved

ones; in this case, the proof of validity is developed simultaneously with the construction of the metacon-

dition,

• ex-post analytic proofs ― when we use a theorem prover; in this case, a metacondition to be proved is

presented first, and its proof is developed (discovered) later.

We expect that most of our programmers' work will involve using a composer to develop ex-ante proofs, although

they may also occasionally use a theorem prover to find an ex-post proof. It is important to note here that the

theorem prover will not be used to verify the correctness of programs, but only to check the validity of certain

“intermediate” metaconditions.

2.2 An example of a program development

Let’s analyze an example of a program development to illustrate (in advance) the method that we are going to

study. Assume that we intend to develop the following simple metaprogram:

pre (x is free) and-k (y is free) :
 let x be integer tel;
 let y be integer tel;
 x := 3;
 y := x+1 ;
 x := 2*y
post (x is integer) and-k (y is integer) and-k (x < 10)

We tacitly assume that in the current implementation of Lingua-V, the range of integers is such that our program

will not generate an overflow error, and, therefore, for simplicity, we shall omit this aspect in our metaprogram.

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 6

We shall describe the development of our metaprogram as a sequence of compound steps, each consisting of

several elementary steps. We assume that at the end of every compound step, the resulting metacomponent is

saved in the repository. In the description of each step, we first specify the intended target metaprogram, and then

we explain the process of its construction. As in [6], metaprograms and their components are typed in Ariel narrow;

however, we make an exception for metavariables, which are typed in Arial underlined. This rule is formalized

and explained in Sec. 4. Actions in Lingua-E are typed in Arial Narrow blue. We shall use the same font to type

the names of the elements stored in the Repository. All elements of the Repository will be referred to as lemmas.

Step 1. The development of the declaration of x:

P1 : pre (x is free) and-k (integer is type)
let x be integer tel

post var x is integer

This metacomponent is generated from the following atomic construction rule (Sec. 9.4.4 of [6]), which must be

stored in the repository as an axiom:

A1 : pre (ide is free) and-k (tex is type)
let ide be tex tel

post var ide is tex

We use composer to execute the action

substitute(A1, [ide/x, tex/integer], P1)

which applies the indicated substitution to A1 and stores it in P1.

Step 2. The elimination of the tautology condition (integer is type) from P1.

P2 : pre (x is free)
let x be integer tel

post var x is integer

This step is based on the following metaconditions and construction rules that must be present in the Repository

(error transparency of con means that, for states carrying an error, the denotation of con returns this error).

A2 error-transparent(con) implies con  NT ― this is a definitional axiom of NT; denotationally, NT is a

condition, to be read “nearly true”, that is satisfied for all states that do not carry errors, whereas for states

carrying errors they return these errors,

A3 (error-transparent(con1) and (NT  con2)) implies (con1 and-k con2 ⟺ con1),

A4 (con1 ≡ con2) implies (con1  con2),

A5 (con1 ≡ NT) implies ((con1 and con2) ≡ con1)),

A6 integer is type ≡ NT,

A7 error transparent(ide is free),

A8 pre prc : sin post poc
 prc ⟺ prc-1

 pre prc-1 : sin post poc

Using lemmas A2 to A7, we derive metacondition (L for “lemma”)

L1 (x is free) and-k (integer is type) ⟺ (x is free)

and then we derive of P2 from P1 by A8.

Step 3. The development of the metadeclaration

P3 : pre (y is free)
let y be integer tel

post (var y is integer)

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 7

This step is analogous to the development of P2.

Step 4. The enrichment of P2 by (y is free) and P3 by (var x is integer)

P4 : pre (x is free) and-k (y is free)
let x be integer tel

post (var x is integer) and-k (y is free)

P5 : pre (var x is integer) and-k (y is free)

let y be integer tel
post (var x is integer) and-k (var y is integer)

To perform these transformations, we need the following lemmas in the Repository (for irrelevant for, see Sec.

9.3.4 of [6]):

L2 different(ide1, ide2) implies ((ide1 is free) irrelevant for (let ide2 be tex tel)),

L3 different(ide1, ide2) implies ((ide1 is tex1) irrelevant for (let ide2 be tex2 tel),

L4 pre prc : sin post poc

 con irrelevant for sin

 pre prc and-k con : sin post poc and-k con

Step 5. The sequential composition of P4 and P5

P6 : pre (x is free) and-k (y is free)
let x be integer tel
let y be integer tel

post (var x is integer) and-k (var y is integer)

Here we use Lemma 9.4.3-5 (Sec. 9.4.3 of [6]), which must be in the Repository.

Step 6. The development of a metaprogram

P7 : post (var x is integer) and-k (var y is integer)
 x := 3
 post (var x is integer) and-k (var y is integer) and-k (x = 3)

To develop this program, we use @-tautology (Sec. 9.4.6.2 of [6])

A9: pre sin @ con
 sin

 post con

which must be in the Repository. By an appropriate substitution applied to this formula, we create the following

(concrete) metaprogram:

P6.1 pre x := 3 @ (var x is integer) and-k (var y is integer) and (x = 3)
 x := 3

post (var x is integer) and-k (var y is integer) and-k (x = 3)

Next, we find in the Repository the following lemma:

L5: (ide not in vex) implies
(ide := vex @ (var ide is tex) and-k (vex is tex) and-k (ide = vex) ⟺ (var ide is tex) and-k (vex is tex))

from which we can derive by appropriate rules

x := 3 @ (var x is integer) and-k (var y is integer) and x = 3 ⟺ (var x is integer) and-k (var y is integer)

Now, we use Lemma 7. (see P2

Step 7. The development of a metaprogram

P8 : pre (var x is integer) and-k (var y is integer) and-k (x = 3)
 y := x+1

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 8

 post (var x is integer) and-k (var y is integer) and-k (y = 4)

We use a technique similar to that in Step 6 to derive the weak equivalence.

y := x+1 @ (var x is integer) and-k (var y is integer) and-k (y = 4) ⟺
(var x is integer) and-k (var y is integer) and-k (x=3)

Step 8. The development of a metaprogram

P9 : pre (x is free) and-k (y is free)
let x be integer tel
let y be integer tel
x := 3;
y := x + 1

 post (var x is integer) and-k (var y is integer) and-k (y = 4)

We combine sequentially P6, P7, and P8.

Step 9. The development of a metaprogram

P10 : pre (var x is integer) and-k (var y is integer) and-k (y = 4)
 x := 2*y
 post (var x is integer) and-k (var y is integer) and-k (y = 4) and-k (x = 8)

We proceed similarly to Step 6.

Step 10. The development of a metaprogram

P11 : pre (var x is integer) and-k (var y is integer) and-k (y = 4)
 x := 2*y
 post (var x is integer) and-k (var y is integer) (x < 10)

In this step, we replace the postcondition of P10 by a weaker one (Sec. 9.4.3 of [6]), and we have to use the

theorem prover to prove the following metaimplication:

(var x is integer) and-k (x = 8)  (var x is integer) and-k (x < 10)

which essentially means that we have to prove the validity of the formula 8 < 10.

Step 11. Our target program is generated by combining programs P9 and P11.

There are two critical observations we can draw from our example. Both are based on the fact that our program-

derivation technique involves proving theorems about programs and that our proofs differ from proofs in “usual”

mathematics.

First, as we have already mentioned, our proofs are ex ante rather than ex post. This fact has a technical

consequence regarding the process of conducting proofs. In traditional proofs conducted by theorem provers,

users must provide the so-called tactics, which are hints on how to carry out proofs. These tactics need to be

“known” by users, which is not always straightforward. In our case, the roles of ex-post tactics are played by the

ex-ante choices of construction rules and metaconditions in the Repository. These choices are quite natural for

programmers who know what program they intend to create.

Our second observation is that, in our case, most of the work in constructing a program is done by the composer

rather than the theorem prover. In our example, the only general mathematical hypothesis we needed to prove

appeared in Step 10 as the validity of

8 < 10 ≡ NT

which must be deduced from the basic mathematical axioms of integer arithmetic. At the same time, we have

referred to our Repository in using composer about 40 times.

Of course, based on a single toy example, we cannot draw general conclusions; however, this case suggests

that there is something underlying this discrepancy. In our view, these preliminary investigations of the process

of program development indicate that using a theorem prover in an ex-ante constructive process of program

validation may be much less “intensive” than in the ex-post analytical case.

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 9

2.3 A recollection on first-order and second-order formalized theories

As we have seen in our example, some steps in the development of a program require proving the satisfaction of

formulas that describe facts about the values of variables appearing in the program. Since in a “practical pro-

gramming”, such formulas may be computationally fairly complicated ― the number of variables in these for-

mulas may be comparable to the number of variables in a current program ― an automatic theorem prover should

support programmers in Lingua-V. To build such a prover, or to adapt an existing one to our goal, we first need

to establish a formalized theory rich enough to talk about programs and their components, i.e., data, types, values,

references, denotations, and so on. In this paper, we outline a general scenario for developing a theory for a

programming language with a denotational model. We begin with a brief review of the concepts of first-order

and second-order formalized theories.

In first-order theories, we talk about the elements of a set Uni, usually called the universe, and about many-

argument functions and predicates on this set, i.e.:

fun : Unicn ⟼ Uni for n ≥ 0 functions

pre : Unicn ⟼ Bool for n ≥ 0 predicates

where

boo : Bool = {tt, ff}

The language of a first-order theory includes three syntactic categories:

• variables running over Uni,

• terms that represent functions,

• formulas that represent predicates.

To define them, we are given four mutually disjoint sets of symbols:

var : Variable ― a possibly infinite set of variables
fn : Fn ― a finite set of function names,
pn : Pn ― a finite set of predicate names,
sep : Separator ― a finite set of separators such as parentheses, colons, etc.

The union of all these sets is called an alphabet:

Alphabet = Variable | Fn | Pn | Separator

Every functional and predicative symbol has an arity ― a non-negative integer indicating the number of argu-

ments of this functional or predicative symbol, respectively. We thus define a function:

arity : Fn | Pn ⟼ {0, 1, 2,…}

We assume that zero-ary functional symbols, called constants, represent the elements of Uni, and zero-ary pre-

dicative symbols represent the logical values true and false. Based on these assumptions, we define the sets of

variables, terms, and formulas using the following grammar.

var : Variable =
 x | y | z | x-1 | y-1 | z-1 |… variables may have indices

ter : Term =
 mk-term(Variable) | make a term from a variable

 fn() | for all fn : Fn with arity.fn = 0
 fn(Term, … ,Term) | for all fn : Fn with arity.fn = n and the argument tuples with n elements

for : Formula =
 true |

false |
pn(Term, … ,Term) | for all pn : Pn with arity.pn = n and the argument tuple with n elements

not(Formula)
and(Formula, Formula) |

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 10

or(Formula, Formula) |
implies(Formula, Formula) |1
(∀ Variable) Formula |
(∃ Variable) Formula

In this grammar, we have introduced a (meta)notational convention such that:

1. the names of functions and predicates are printed in green Arial Narrow,

2. separators are printed in green Arial Narrow,

3. variables like x, y, z… are printed in black Arial,
4. metavariables like “Variable”, “Term”, “Formula” are printed in black Arial.

This convention slightly modifies the one introduced in Sec. 7.2 of [6], where all terminal symbols of grammars

are written in Arial Narrow. In this paper, we make an exception for variables, which are printed in Arial. This

decision will be explained in Sec. 4.4.

Variables appearing in formulas under the signs of quantifiers are said to be bound, and variables that are not

bound are called free. In the set of formulas, we distinguish four categories:

• open formulas ― at least one free variable, e.g., x < 1 or (∀x)(x < y),

• closed formulas ― all variables are bound, e.g., (∀x)(∃y)(x < y),

• ground formulas ― no variables in such formulas, e.g., 1 < 2,

• free formulas ― some unbound variables in such formulas, e.g., x < 2 or (∀x)(x < y).

In the set of terms, we distinguish only two categories:

• ground terms ― no variables,

• free terms ― with variables.

Let’s consider now a first-order arithmetic of natural numbers (non-negative integers) as an example of a first-

order theory. Let

Variable = {x, y, z,…, x-1, x-2,…},
Fn = {zer, suc)
Pn = {num, equ}

where

arity.zer = 0 zer() or just zer represents number zero

arity.suc = 1 suc(x) is the successor of x
arity.num = 1 num(x) means that x is a number

arity.equ = 2 equ(x,y) means that x and y are equal

Examples of terms in this theory may be:

zer, suc(zer), suc(suc(zer)),.., suc(x), suc(suc(y)), …

and examples of formulas:

true, num(zer),
equal(suc(zer), suc(x)),
and(equal(suc(zer), suc(x)), equal(suc(suc(y)), suc(suc(x))),
(∀x) not((equal(x, suc(x))).

Given the language of our theory, we can define axioms that express the intended meanings of functions and

predicates represented in the language by functional and predicational symbols. For better readability, we shall

write:

(ter-1 = ter-2) instead of equ(ter-1, ter-2),
(for-1 and for-2) instead of and(for-1, for-2),

1 Of course, while we have negation and alternative, the remaining connectives may be defined, but we introduce them as

primitive connectives for convenience.

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 11

(pre-1 → pre-2) instead of implies(pre-1, pre-2).

We will also omit parentheses when this does not cause ambiguity. The following axioms specify the expected

properties of the equality predicate:

(1) x = x
(2) x = y → y = x
(3) (x = y and y = z) → x = z
(4) (x-1 = y-1 and … and x-n = y-n) → (fn(x-1,…,x-n) = fn(y-1,…,y-n)) for all fn : Fn
(5) (x-1 = y-1 and … and x-n = y-n) → (pn(x-1,…,x-n) = pn(y-1,…,y-n)) for all pn : Pn

Axioms (1) – (3) describe the fact that equality is an equivalence relation and two remaining (schemes of) axioms

— that it is a congruence for all functions and predicates. The next group of axioms describes the intended prop-

erties of the meanings of num, zer, and suc2:

(6) num(zer) zero is a natural number,
(7) num(x) → num(suc(x)) the successor of a natural number is a natural number,
(8) num(x) → not (suc(x) = zer) the successor of a natural number never equals zero,
(9) x = suc(y) and x = suc(z) → y = z suc is a reversible function

A formal language together with axioms constitutes an axiomatic theory. On the grounds of such a theory, we

can define the concepts of the validity of formulas and of a model of the theory. We shall define these concepts

in an abstract case of an arbitrary first-order theory. We start by defining an interpretation of the underlying

language as a triple:

Int = (Uni, F, P)

where

• Uni is a set called universe, and its elements are called primitive elements of the interpretation,

• F is a function that, with every functional symbol fn of arity n ≥ 0, assigns a n-ary function
F[fn] : Unicn ⟼ Uni, and for n = 0, F[fn] : ⟼ Uni,

• P is a function that, with every predicative symbol pn of arity n ≥ 1, assigns a n-ary predicate
P[pn] : Unicn ⟼ Bool; we assume that P[true] = tt and P[false] = ff

Note that F and P are functions that belong to the metalevel of our theory, rather than to the theory itself. In

contrast, fn and pn belong to the theory level ― more precisely, to the theory’s language. By a valuation, we

mean a total function that assigns elements of Uni to variables:

vlu : Valuation = Variable ⟼ Uni3

Now, for every interpretation of our theory, we can define the semantics of variables SV, of terms ST, and of

formulas SF, respectively:

SV : Variable ⟼ Variable

ST : Term ⟼ Valuation ⟼ Uni
SF : Formula ⟼ Valuation ⟼ Bool

such that for any variable var

SV[var] = var the denotation of a variable is the variable itself,

 and for every vlu : Valuation

ST.[mk-term(var)].vlu = vlu.var for every var : Variable
ST.[fn(ter-1,…,ter-n)].vlu = F[fn].(ST.[ter-1].vlu,…,ST.[ter-n].vlu) where n = arity.fn, n ≥ 0

SF.[true].vlu = tt
SF.[false].vlu = ff

2 These axioms were formulated by an Italian mathematician Giuseppe Peano (1858 – 1932).
3 We introduce a metavariable vlu rather than val, since the latter is used in [6] for values.

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 12

SF.[pn(ter-1,…,ter-n)].vlu = P[pn].(ST.[ter-1].vlu,…,ST.[ter-n].vlu) where n = arity.fn, , n ≥ 1
SF.[(for-1 and for-2)].vlu = SF.[for-1].vlu and SF.[for-2].vlu
SF.[(for-1 or for-2)].vlu = SF.[for-1].vlu or SF.[for-2].vlu
SF.[(for-1 implies for-2)].vlu = SF.[for-1].vlu implies SF.[for-2].vlu
SF.[not(for)].vlu = not SF.[for]
SF.[(∀var)for].vlu = tt iff for every ele : Uni, SF.[for].vlu[var/ele] = tt
SF.[(∃var)for].vlu = tt iff there exists ele : Uni, such that SF.[for].vlu[var/ele] = tt

where and, not,… are classical logical connectives of our metalevel.

It is to be noticed in this place that scripts like pn(ter-1,…,ter-n) where ter-i’s represent arbitrary terms for-

mally do not belong to the language of our theory, but only represent its elements at the level of a metalanguage.

We say that a formula for is satisfied in a given interpretation if, for every valuation vlu of this interpretation,

the formula evaluates to true, i.e.,:

SF.[for].vlu = tt.

An interpretation is said to be a model of an axiomatic theory if all axioms of that theory are satisfied in this

interpretation. A formula for is said to be valid in a theory with a set of axioms A, which we describe by a

metaformula:

A |= for,

if it is satisfied in every model of this theory. In this case, we also say that for is a semantic consequence of the

set of axioms A. An example of a valid formula in Peano’s arithmetic is

not(zer = suc(zer))

which says that zero is different from its successor. Note that

A |= for(x) iff A |= (∀x)for(x)

where for(x) symbolically denotes a formula with a free variable x.

Although the concept of validity provides a clear distinction between valid and invalid formulas, we do not

use this concept to justify mathematical hypotheses. Instead, we employ a method of deduction that allows us to

derive formulas from axioms using inference rules. If a formula for can be derived by deduction from a set of

axioms A, then we call it a theorem, and we denote this fact by a metaformula:

A |- for

The three most commonly used rules of inference (we leave out some rules for quantifiers) are the following (not

entirely formal):

Rule of substitution

A |- for(x)

A |- for(ter)

This rule states that if in a theorem we replace free variables with arbitrary terms, then the new formula can also

be considered a theorem. The second rule is the primary foundation of deduction:

Rule of detachment (modus ponens)

A |- for1
A |- (for1 implies for2)

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 13

A |- for2

If we prove for-1 and we prove the implication (for-1 → for-2), then we can conclude that for-2 has been proved.

Rule of generalization

A |- for(x)

A |- (∀x) for(x)

where x is free in for(x). We will not discuss other rules involving quantifiers at this point, as they are not neces-

sary. Once we add rules of inference to an axiomatic theory, we get a formalized theory.

An Austrian mathematician, Kurt Gödel, proved in his doctoral dissertation in 1929 the following theorem:

Gödel’s completeness theorem. In first-order theories, every proved formula is valid, and every valid formula

can be proved, i.e., A |= for iff A |- for.

Unfortunately, despite this “highly desirable” property, first-order theories also have a serious flaw. Every first-

order theory that has an infinite model also has infinitely many non-isomorphic models. In simpler terms, we

could say that in first-order theories, we never fully know what we are talking about. This is easily seen in our

example of first-order arithmetic. Although our goal was (supposedly) to create a theory of natural numbers, and

although such numbers with suc(x) = x+1 do form a model of our theory, the theory has many other non-iso-

morphic models. Let’s look at two of them:

• In the first model, Uni is the set of all real numbers, num(x) is satisfied for all elements of Uni, and suc(x)
= x+1. In this model, there are elements of Uni that are not reachable from zero by a multiple use of

successor4.

• In the second model, Uni includes only natural numbers plus one decimal number, e.g., 0,5. We set num(x)
= tt for all elements of Uni, suc(x) = x+1 for all natural numbers, and suc(0,5) = 0,5. In this model, an

element may be equal to its own successor.

To address the “ambiguity of axioms” ― formally, we say that our theory is noncategorical, which means that it

has nonisomorphic models ― we need to enrich the theory with the following second-order axiom of induction,

where valuations may assign to variables not only elements of Uni but also predicates in Uni.

10. (P(zer) and (P(x) → P(suc(x)) → (num(x) → P(x))

In this axiom, P is a second-order (predicative) variable of arity 1, which means that valuations may assign to it

arbitrary unary predicates in Uni. Axiom 10. says that if (our zero) zer has property P and, if for every element

x with property P the successor of this element has property P, then all elements that satisfy num have property

P. In other words, num represents the least set that includes zer and all its successors. This axiom guarantees

that all models of our new theory are isomorphic with the algebra of all natural numbers, where suc(x) = x + 1.5

Another “advantage” of axiom 10 is that in our theory, we can carry out proofs by induction. As a matter of

fact, we can do it in every theory which includes second-order arithmetic, i.e., which either includes axioms (6)

– (10), or where these axioms can be formulated and proved. As an example, let’s prove the following theorem

x ≠ suc(x) (2.1-1)

where x ≠ y stands for not(x = y). It is worth noticing that this formula is not valid in the first-order arithmetic.

Let Q(x) be a predicate satisfied if x ≠ suc(x). By axiom (8), Q(zer) is satisfied. Let for a given x, formula x
≠ suc(x) be satisfied. Then, by axiom (9) suc(x) ≠ suc(suc(x)), hence Q(suc(x)). The application of axiom (10)

completes the proof.

4 Note that here suc denotes a function that is the meaning of function name suc (green).
5 Axiom (10) was also formulated by G. Peano.

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 14

The main technical difference between first-order and second-order theories is that the latter have three sets

of variables, rather than only one, i.e.:

inv : Iv = {inv-1, … ,inv-p} individual variables; first-order variables
fuv : Fv = {fuv-1, … ,fuv-q} functional variables; second-order variables

prv : Pv = {prv-1, … ,prv-r} predicative variables; second-order variables,

and, of course, function arity is now extended to second-order variables, i.e.:

arity : Fn | Pn | Fv | Pv ⟼ {0, 1, 2, …}

We appropriately extend the sets of terms and formulas by adding new clauses to the equations of the former

grammar:

ter : Term =
all former clauses

 fuv(Term, … ,Term) | for every fuv : Fv with arity.fuv = n and the argument tuples with n elements

for : Formula =

all former clauses

 prv(Term, … ,Term) | for every prv : Pv with arity.prv = n and the argument tuples with n elements

Note that for every second-order variable we create an individual grammatical clause, similarly to functional and

predicational symbols. At the same time, we do not introduce grammatical equations to generate second-order

variables, as is the case for individual variables:

inv : IndVar =
 x | y | z | x-1 | y-1 | z-1 |… individual variables

Finally, we add new semantic clauses to the definitions of the functions of semantics of terms and of formulas ―

again, one clause for every second-order variable:

ST.[fuv(ter-1,…,ter-n)].vlu = (vlu.fuv).(ST.[ter-1].vlu,…,ST.[ter-n].vlu) where n = arity.fuv, , n ≥ 0

SF.[prv(ter-1,…,ter-n)].vlu = (vlu.prv).(ST.[ter-1].vlu,…,ST.[ter-n].vlu) where n = arity.prv, , n ≥ 1

In the future, the theories used by our theorem provers will be second-order and will include arithmetic, thereby

offering the possibility of carrying out proofs by induction. There is, however, a price that we have to pay for all

these advantages:

Gödel’s incompleteness theorem. In second-order theories with arithmetic, there exist valid formulas that

can’t be proved, i.e., A |= for but not A |- for.

Fortunately, we have yet another theorem:

Gödel’s adequacy theorem. In second-order theories with arithmetic, every proved formula is valid. I.e.

if A |- for then A |= for.

This second theorem is satisfied by practically all mathematical theories used by “working mathematicians”. It

turns out that practically all the valid formulas that we need to prove in these theories are provable.

At the end of this section, we review the definitions of two important concepts related to formalized theories.

Def. A formalized theory is called consistent if it has a model.

The following theorem describes two critical properties ― in fact, two alternative definitions ― of consistent

theories.

Theorems about consistency.

(1) A theory is consistent iff there is no valid formula for in such that |= for and |= not for.

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 15

(2) A theory is consistent iff there exists at least one invalid formula in it.

Inconsistent theories are of no scientific interest because, by (2), all their formulas are valid. In other words, in

inconsistent theories, we can’t distinguish between the truth and the falsity.

Def. A formalized theory is called complete if it is consistent and for any formula, for either |- for or |- not for.

This time, incomplete theories are usually more interesting than the complete ones, because they are more general.

For instance, a formalized theory of groups is not complete, since on its grounds, we cannot prove that a group

has exactly 15 elements (see [13], p. 292).

In formalized mathematics, and in particular in our investigations, we shall not “struggle” to make our theories

complete. However, on the other hand, we should make our theories “sufficiently complete” to be able to prove

the correctness of “sufficiently many correct metaprograms”.

2.4 Formalized theories in an algebraic framework

One of our goals in this paper is to outline a general method for building a formalized theory of second-order

logic, where we could describe the process of developing correct metaprograms in a Lingua-V-like language.

Creating such a theory involves developing a language that we will call Lingua-D (“D” for “denotations”), which

is sufficiently expressive to state and verify the correctness of metaprograms in Lingua-V. In this section, we

will examine this task in an abstract scenario where:

• the source language, called Language-V, is given as a pair of algebras ― of syntax AlgSyn-V and of

denotations AlgDen-V ― sharing a common signature and a unique homomorphism (the semantics)

between them,

• the target language, called Language-D, is a language of a formalized second-order theory where we can

talk about and prove the truth of valid formulas expressed in Language-V; also, this language will be

identified by two algebras and a homomorphism, i.e., will have a denotational model.

Fig. 2.4-1 The development of a Language-D for a programming Language-V

The transformation of a source language into a target language will be performed in five steps, as shown in Fig.

2.4-1.

1. The identification of an algebra of denotation AlgDen-V of some source language.

2. The identification of an algebra AlgSyn-V of abstract syntax for AlgDen-V. The elements of this lan-

guage will represent ground terms and ground formulas of the future Language-D.

3. The transformation of the abstract syntax of the source language into an abstract syntax of the target

language. Here we introduce variables, free terms, and free formulas. This transformation will be referred

to as the lifting of a language of zero-order ― one that only contains ground terms and ground formulas

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 16

― to a language of second-order, where variables may range not only over the elements of a particular

universe, but also over functions and predicates defined on that universe.

4. The development of an algebra of denotations AlgDen-D as an adequate generalization of AlgDen-V;

the concept of adequacy will be explained a little later.

5. The establishment of such a set of axioms that AlgDen-D constitutes one of its models.

We assume that all formalized theories investigated in the sequel will be based on standard inference rules

sketched in Sec. 2.3. It should also be noticed that our formalized theories will be many-sorted, compared to one-

sort theories investigated in Sec. 2.3 (only one universe). Now, instead of one universe, we have a family of

carriers of a corresponding algebra of denotations.

Regarding the problem of axiomatizing Language-D, there are two basic strategies for building a set of axioms

for a lifted language:

A. We formulate all axioms in Language-D. In this case, the set of axioms may be pretty large, and we have

to make sure that it is consistent and “sufficiently complete”. The latter practically means that we can

prove the truth of “sufficiently many” valid formulas.

B. We define the carriers and constructors of AlgDen-D in some larger formalized theory, e.g., in an axio-

matic set theory. In this case, the set of axioms is relatively small and known (from literature) to be con-

sistent, but we have to formulate a large number of definitions. And, of course, we must enrich our lifted

language by introducing new concepts, i.e., new carriers and constructors.

At this moment, we do not know (yet) which of these strategies will better fit our needs. We expect that some

further research will clarify this point. As we mentioned earlier, we hope to develop our ecosystem, along with

its Language-D, dynamically, as our experiences accumulate.

In this section, we shall concentrate on steps 3 and 4. Let the source language be given by two algebras with

a common signature:

AlgSyn-V = (Sig-V, CarSyn-V, FunSyn-V, carSyn-V, funSyn-V) abstract syntax of Language-V

AlgDen-V = (Sig-V, CarDen-V, FunDen-V, carDen-V, funDen-V) denotations of Language-V

Sig-V = (Cn-V, Fn-V, arity-V, sort-V)

The only assumptions regarding this algebra are the following

boo : Cn-V,
and, or, implies, not : Fn-V; these operators are interpreted as classical connectives,

carDen.boo = Bool where Bool = {tt, ff}

Note that in Lingua-V, we use classical connectives in metaconditions, Kleene’s connectives in conditions, and

McCarthy’s connectives in boolean expressions.

It should be noted that, in addition to carrier Bool, the family of carriers of AlgDen-V may include another

“Boolean carrier”, different from Bool, such as, e.g., BoolE = Bool | Error. However, the sort boo mentioned

above is the sort of metaconditions rather than conditions!

Similar to programming languages, D-languages can also have an abstract, concrete, or colloquial syntax.

Here, we primarily use abstract syntax because it provides a convenient framework for abstract algebras. Of

course, once an abstract syntax of Language-D is developed, its syntax can be transformed into a concrete or

colloquial version.

Assuming that the source algebras of Language-V are given, we build for them two derivative algebras of

Language-D:

AlgSyn-D = (Sig-D, CarSyn-D, FunSyn-D, carSyn-D, funSyn-D) abs. syntax of Language-D

AlgDen-D = (Sig-D, CarDen-D, FunDen-D, carDen-D, funDen-D) den. of Language-D

The transformation from Language-V to Language-D will be called the lifting of a language, and the D-algebras

will be called lifted algebras.

Let’s assume that the abstract-syntax grammar of Language-V is the following:

Equations generating terms ― one equation for every sort cn : Cn-V with cn ≠ boo:

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 17

ter : Term-V.cn =6
 fn(Term-V.cn-1,…,Term-V.cn-n) | for all fn : Fn-V with

arity.fn = (cn-1,…,cn-n)
 sort.fn = cn

One equation generating formulas

for : Form-V = we use Form-V instead of Term-V.boo
 pn(Term-V.cn-1,…,Term-V.cn-n) | for all pn : Fn-V with

arity.pn = (cn-1,…,cn-n)
sort.pn = boo

 and(Form-V, Form-V) |
 or(Form-V, Form-V) |
 implies(Form-V, Form-V) |
 not(Form-V)

Of course, for Language-V to be not empty, the set Fn-V of function names must include at least one zero-ary

functional symbol.

Since our language does not have variables, it includes only ground terms and ground formulas. It may be said

to be the language of a zero-order theory. As we know from [6], there exists a unique many-sorted homomor-

phism between our algebras:

SEM-V : AlgSyn-V ⟼ AlgDen-V

that we refer to as the semantics of this language.

To describe the transformation of AlgSyn-V to AlgSyn-D, let’s assume that the future signature of D-lan-

guage is the following:

Sig-D = (Cn-D, Fn-D, arity-D, sort-D)

The basic difference between Language-V and Language-D is such that the latter includes variables of three

categories:

inv : IndVar ― first-order individual variables running over the elements of the carriers of CarDen-V,

fuv : FunVar ― second-order functional variables running over functions on such elements,

prv : PreVar ― second-order predicational variables running over predicates on such elements.

We assume that each individual variable has a sort described by a function:

sort : IndVar ⟼ Cn-V

that indicates a carrier carDen-V.cn whose elements may be assigned to that variable in valuations, and that each

second-order variable has an arity and a sort:

arity : FunVar ⟼ Cn-Vc*
sort : FunVar ⟼ Cn-V

arity : PreVar ⟼ Cn-Vc*

sort : PreVar ⟼ {boo}

The functions of arities indicate the arities of functions/predicates that can be assigned to corresponding variables

and the functions of sorts ― the sort of their values. Now, with every sort cn : Cn-V, we define a family of

variables of this sort

IndVar.cn = {inv : IndVar | sort.inv = cn}
FunVar.cn = {fuv : FunVar | sort.fuv = cn}
PreVar = {prv : PreVar | sort.prv = boo}

6 We write Term.cn rather than Term.cn since the former is regarded as an “indivisible” metavariable in our fixed-point

equations, rather than as a function that takes a sort name cn as an argument.

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 18

For every individual variable, we define a zero-ary constructor that creates this variable:

civ-cn-inv : ⟼ IndVar
civ-cn-inv.() = inv

Besides, we define two functions that make single-variable terms from variables:

mk-term-cn.inv = mk-term-cn(inv) for all inv : IndVar.cn and all cn : Cn-V – {boo]

Here mk-term-cn is a metaname of a function on strings of characters, whereas mk-term-cn is a concrete string of

characters, i.e., it stands for itself. Consequently, mk-term-cn(inv) is a string of green characters followed by an

individual variable and ending with a green bracket.

From the grammar of AlgSyn-V, we build a grammar of AlgSyn-D, or ― more precisely ― we build a

grammar that will indicate that algebra. This new grammar is constructed from the former one by the following

extensions:

1. adding one equation for each sort-name cn to generate the domain of individual variables of sort cn,

2. adding to each equation, generating terms of sort cn:

a. one clause that generates the domain of single-variable terms of sort cn,

b. for each functional variable fuv : FunVar with sort.fuv = cn one clause to generate a term with

fuv as the main operation,

3. adding to the (unique) equation generating formulas:

a. one clause that generates single-variable formulas,

b. for each predicational variable prv : PreVar one clause to generate a formula with prv as the

principal predicate,

c. six clauses with quantifiers ― two for each of the three categories of variables.

As we observe, the new grammar contains all the “content” of the previous one, plus some new equations (for

variables) and additional clauses to the equations that generate terms and formulas. This partly explains our earlier

claim that Language-D should be “an adequate generalization” of Language-V. However, this is not the only

reason supporting that claim.

The new grammar is the following:

Equations generating individual variables ― one equation for every sort name cn : Cn-V:

IndVar.cn =7
civ-cn-inv-1.() | civ-cn-inv-2.() | …

Equations generating terms ― one equation for every sort name cn : Cn-V with cn ≠ boo:

ter : Term-D.cn =
 mk-term(IndVar.cn) |
 fn(Term-D.cn-1,…,Term-D.cn-n) | for every fn : Fn-V with

arity.fn = (cn-1,…,cn-n)
 sort.fn = cn

 fuv(Term-D.cn-1,…,Term-D.cn-n) | for every fuv : FunVar with

arity.fuv = (cn-1,…,cn-n)
 sort.fuv = cn

One equation generating formulas

for : Form-D = we use Form-D instead of Term-D.boo
 fn(Term-D.cn-1,…,Term-D.cn-n) | for every fn : Fn-V with

arity.fn = (cn-1,…,cn-n)
sort.fn = boo

 prv(Term-D.cn-1,…,Term-D.cn-n) | for every prv : PreVar with

7 We do not write IndVar.cn but IndVar.cn since the latter is regarded as an “indivisible” metavariable in our set of fixed-

point equations.

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 19

arity.prv = (cn-1,…,cn-n)
sort.prv = boo

 and(Form-D, Form-D) |
 or(Form-D, Form-D) |
 implies(Form-D, Form-D) |
 not(Form-D) |
 (∀𝑖 IndVar) Form-D |

 (∃𝑖 IndVar) Form-D |
 (∀𝑓 FunVar) Form-D |
 (∃𝑓 FunVar) Form-D |

 (∀𝑝 PreVar) Form-D |
 (∃𝑝 PreVar) Form-D

In the quantified formulas above, we introduce two quantifiers for each of the three sorts of variables. For exam-

ple, (∀𝑖) is a quantifier for individual variables, hence (∀𝑖 ide) is understood as an individual-variable quantifi-

cation of the individual variable ide.

Assume that the AlgSyn-D is implicit in this grammar (see Sec. 2.15 of [6]). At this moment, we may identify

the common signature of both lifted grammars:

cn : Cn-D =
{IndVar.cn | cn : Cn-V} | all carriers of individual variables

Cn-V – {boo} | all former names except boo now replaced by Form-D
{formula}

Here, IndVar.cn symbolically denotes the name of the carrier IndVar.cn. The set of names of functions is the

following:

fun : Fn-D =
{civ-cn-inv | cn : Cn-V, inv : IndVar} | all names of individual-variable constructors

{mk-term} | the name of mk-term
Fn-V | all former names (including these with boo sort)

FunVar | all functional variables

 PreVar | all predicational variables
{mk-formula} |
{and, or, implies, not, ∀i, ∃i, ∀f, ∃f, ∀p, ∃p}

Here, functional/predicational variables are regarded as the names of functions creating terms/formulas in

AlgSyn-D and the denotations of terms/formulas in AlgDen-D. This will be seen a little later.

The last step in our lifting process is the generation of AlgDen-D. To do that, we first define the domains of

valuations. Let:

uni : Universe = U{car.cn | cn : Cn-V}
vlu : IndValuation ⊆ IndVar ⟼ Universe
vlu : FunValuation ⊆ FunVar ⟼ {fun | fun : Universec* ⟼ Universe}
vlu : PreValuation ⊆ PreVar ⟼ {pre | pre : Universec* ⟼ Bool}
vlu : Valuation ⊆ IndValuation | FunValuation | PreValuation

We assume that the domains of valuations include all total functions on variables which are sort-wise well-formed,

which means that for every valuation vlu:

if inv : IndVar.cn
then vlu.inv : carDen-V.cn

if fuv : FunVar with arity.fuv = (cn-1,…,cn-n) and sort.fuv = cn
then vlu.fuv : carDen-V.cn-1 x … x carDen-V.cn-n ⟼ carDen-V.cn

if prv : PreVar with arity.prv = (cn-1,…,cn-n)
then vlu.prv : carDen-V.cn-1 x … x carDen-V.cn-n ⟼ carDen-V.boo

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 20

Next, with every sort cn : Cn-D we associate a corresponding domain of denotations, thus defining the function

carDen-D:

carDen-D.cn = Valuation ⟼ carDen-V.cn for all cn : Cn-V
carDen-D.formula = Valuation ⟼ carDen-V.boo
carDen-D.IndVar.cn = IndVal.cn for all cn : Cn-V, variables are the denotations of

 themselves

In this moment, we are ready to define the interpretation function funDen-D. We define it case-by-case:

(1) For every name civ-cn-inv of a variable-creating function, its interpretation is the corresponding variable-cre-

ating function:

funDen-D.civ-cn-inv : ⟼ IndVar.cn i.e.
funDen-D.civ-cn-inv.() = civ-cn-inv.()

(2) For every name mk-term-cn of the term-making function:

funDen-D.mk-term-cn : IndVar.cn ⟼ carDen-D.cn i.e.

funDen-D.mk-term-cn : IndVar.cn ⟼ Valuation ⟼ carDen-V.cn for all cn : Cn-V
funDen-D.mk-term-cn.inv.vlu = vlu.inv

The denotation of a term that consists of a single individual variable, inv, is a function that, when applied to a

valuation, vlu, returns the value assigned to that variable in this valuation.

(3) For every functional name fn : Fn-V with arity.fn = (cn-1,…,cn-n) and sort.fun = cn:

funDen-D.fn : carDen-D.cn-1 x … x carDen-D.cn-n ⟼ carDen-D.cn
funDen-D.fn.(den-1,…,den-n).vlu = funDen-V.fn.(den-1.vlu,…,den-n.vlu)

Note that at the right-hand side of the equation, we refer to the meaning of fn in Language-V. That is the second

argument to say that AlgDen-D is an adequate generalization of AlgDen-V.

(4) For every functional variable fuv : FunVar with arity.fuv = (cn-1,…,cn-n) and sort.fuv = cn:

funDen-D.fuv : carDen-D.cn-1 x … carDen-D.cn-n ⟼ carDen-D.cn
funDen-D.fuv.(den-1,…,den-n).vlu = vlu.fuv.(den-1.vlu,…,den-n.vlu)

(5) For the name mk-formula of the formula-making function:

funDen-D.mk-formula : IndVar.boo ⟼ carDen-D.boo i.e.

funDen-D.mk-formula : IndVar.boo ⟼ Valuation ⟼ carDen-V.boo
funDen-D.mk-formula.inv.vlu = vlu.inv

(6) and (7) The cases of the names of predicates and of predicational formulas are analogous to (3) and (4), and,

therefore, we shall not repeat them.

The cases concerning propositional operators and quantifiers are routine; therefore, we present just two exam-

ples.

(8) For conjunction

funDen-D.and : CarDen-D.formula x CarDen-D.formula ⟼ CarDen-D.formula
funDen-D.and.(den-1, den-2).vlu = funDen-V.and.(den-1.vlu, den-2.vlu)

where and is a classical two-valued conjunction.

(9) For a general quantifier

funDen-D.∀𝑖 : IndVar x CarDen-D.formula ⟼ CarDen-D.formula
funDen-D.∀𝑖.(inv, den).vlu =
 for any ini : Universe, den.(vlu[inv/uni]) = tt ➔ tt
 true ➔ ff

Our definition identifies a unique homomorphism

SEM-D : AlgSyn-D ⟼ AlgDen-D

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 21

that we call the semantics of Language-TF. Now we can easily prove the last fact that justifies calling Language-

TF an “adequate generalization” of Language-V. First, note that every term or formula of Language-V is a

(ground) term or formula of Language-D. The second fact is that for every carrier name cn : Cn-V, every term

ter : Term-V.cn, and every valuation val : Valuation.

SEM-D.cn.ter.val = SEM-V.cn.term.

In other words, the denotations of terms in Language-V are “compatible” with those in Language-D.

At the end of this section, a general observation about our approach to constructing theories and their models

is appropriate. In typical textbooks of mathematical logic, the language and axioms of a formalized theory are

presented first, and only then are the associated models examined. However, “a working mathematician” usually

proceeds in reverse — they construct a model first and often leave the task of its axiomatization to colleagues in

formal logic departments. That is also our perspective. We start with a denotational model of a programming

language, where the algebra of syntax defines the language of the theory, and the algebra of denotations represents

its model. Then, we aim to identify a set of axioms such that our algebra of denotations is one of its models. The

existence of this model guarantees that our theory is consistent.

2.5 Formalized Peano’s arithmetic

Let’s illustrate our method on the example of second-order Peano’s arithmetic, this time seen from an algebraic

perspective. As AlgDen-V, we chose a standard zero-order model of this theory (only ground terms and ground

formulas). Let:

nat : Natural = {0, 1, 2,…}
boo : Bool = {tt, ff}

with the following functions:

zer : ⟼ Natural; constant zero

suc : Natural ⟼ Natural; suc.nat = nat + 1
num : Natural ⟼ Bool; num.nat = tt iff nat is a natural number

equ : Natural x Natural ⟼ Bool; equ.(nat-1, nat-2) iff nat-1= nat-2

The signature of this algebra is the following:

Sig-V = ({nat, boo}, {zer, suc, num, equ}, arity, sort}

arity.zer = ()
sort.zer = nat

arity.suc = (nat)
sort.suc = nat

arity.num = (nat)
sort.num = boo

arity.equ = (nat, nat)
sort.equ = boo

The following grammar describes the abstract-syntax algebra of the corresponding Language-V:

ter-V : Term-V = ground terms

 zer() | suc(Term-V)

for-V : Form-V = ground formulas

 num(Term-V) | equ(Term-V, Term-V)

To build a grammar of a second-order Language-D, we first introduce three sets of variables.

IndVar.nat = {x, y, z} individual decimal variables

IndVar.boo = {a, b, c} individual boolean variables

PreVar = {P} one predicational variable

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 22

with

sort.x = nat
…
sort.a = boo
…
sort.P = boo
arity.P = (nat)

Note that we introduce only one predicational variable and no functional variables. A practical rule in this case

is such that we introduce only as many second-order variables as we shall need to formulate our axioms.

With individual variables, we introduce corresponding constructors:

civ-nat-x : ⟼ {x, y, z}
civ-nat-x.() = x
…

Note that we do not introduce a constructor for P since we do not introduce a syntactic domain of the denotations

of second-order variables. In our example, P never appears alone ― always as a part of a formula, e.g., P(x). The

following grammar then describes the abstract syntax of Language-D:

inv-D : IndVar.nat =
 civ-nat-x.() | civ-nat-y.() | civ-nat-z.()

inv-D : IndVar.boo =
 civ-boo-a.() | civ-boo-b.() | civ-boo-c.()

ter-D : Term-D =
 mk-term(IndVar.nat) | zer() | suc(Term-D)

for-D : Form-D =
 mk-formula(IndVar.boo) | num(Term-D) | P(Term-D) | equ(Term-D, Term-D) |

and(Formula-D , Formula-D) | …

The domain of valuations and the corresponding domains of denotations are the following:

vlu : Valuation =
({x, y, z} ⟼ Natural) |
({a, b, c} ⟼ Bool) |
{P} ⟼ (Natural ⟼ Bool)

The domains of denotations:

carDen-D.IndVar.nat = IndVar.nat the denotations of variables are these variables

carDen-D.IndVar.boo = IndVar.boo

carDen-D.nat = TerDen = Valuation ⟼ Natural the name of the domain of terms is nat
carDen-D.boo = ForDen = Valuation ⟼ Bool the name of the domain of formulas is boo

Examples of definitions of function in AlgDenFT are the following:

funDen-D.civ-nat-x() : ⟼ TerDen i.e.
funDen-D.civ-nat-x.() = x

funDen-D.mk-term : IndVar.nat ⟼ TerDen
funDen-D.mk-term : IndVar.nat ⟼ Valuation ⟼ Natural
funDen-D.mk-term.inv.vlu = vlu.inv

funDen-D.suc : TerDen ⟼ TerDen i.e.

funDen-D.suc : TerDen ⟼ Valuation ⟼ Natural
funDen-D.suc.ted.vlu = funDen-V.suc.(ted.vlu)

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 23

The signature of the lifted algebra is the following:

Sig-D = ({nat, boo}, {civ-nat-x() ,…, civ-boo-a() ,…, mk-term,
zer, suc, num, equ, and, or, not, implies, ∀i, ∃i, ∀p, ∃p}, arity, sort}

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 24

3 Formalizing Lingua-V

3.1 The grammar of Lingua-V

Since in [6] conditions and metaconditions were defined by examples only, we have to complete the grammar of

Lingua-V by corresponding equations. Similarly to the case of Lingua, we shall not attempt to define a fully

developed “practical language”, but we restrict our attention to a few typical clauses. We shall omit the prefixes

Abs (for “abstract) or Con (for “concrete”) since we shall now consider only one version of our grammars.

However, we continue to use postfixes -V and -D to distinguish between the two languages. The grammar of

Lingua-V is built by adding to the grammar of Lingua equations corresponding to the following syntactic cate-

gories (we slightly modify the metanames compared to those used in [6]):

con : Con-V ― conditions

asr : Asr-V ― assertions

sin : SpeIns-V ― specified instructions

sde : SpeDec-V ― specified declarations

sct : SpeClaTra-V ― specified class transformations

spp : SpeProPre-V ― specified program preambles

spr : SpePro-V ― specified programs

mco : MetCon-V ― metaconditions

Below, we focus on conditions and metaconditions, as the remaining categories are defined in [6].

The syntax of conditions is similar to that of value expressions with boolean values, but with two exceptions:

• they include several predicational symbols that are not available for value expressions,

• logical connectives used in compound conditions represent Kleene’s rather than McCarthy’s operators.

A scheme of an equation defining the category of conditions may be, therefore, the following (cf. Sec. 7.2.4 of

[6]):

con : Con-V =

 duplicates of atomic boolean expressions of Lingua

con-equal-int(ValExp , ValExp) | equal integers

con-less-int(ValExp , ValExp) | less than, integers

…
 conditions with predicates that are not available for value expressions

con-is-typ(Identifier, TypExp) | identifier declared as a type constant

con-var-is-typ(Identifier, TypExp) | declared variable of a given type

con-proc-opened(Identifier, Identifier) | opened procedure

…
 algorithmic conditions

 con-left-algorithmic(SpePro-V , Con-V) | SpePro-V ― specprograms

 con-right-algorithmic(Con-V , SpePro) |

 compound conditions with Kleene’s operators

con-or-k(Con-V, Con-V) |
con-and-k(Con-V, Con-V) |
con-not-k(Con-V)

In the case of algorithmic conditions, we have ad hoc transformed the corresponding grammatical equation from

Sec. 9.2.6 of [6] into a prefix form. A scheme of an equation defining the category of metaconditions may be the

following:

mco : MetCon-V =

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 25

 relational metaconditions

 mco-stronger(Con-V , Con-V) | in concrete syntax 

mco-weak-equivalent(Con-V , Con-V) | in concrete syntax ⇔
mco-less-defined(Con-V , Con-V) | in concrete syntax ⊑
mco-strong-equivalent(Con-V , Con-V) | in concrete syntax ≡

 behavioral metaconditions

 mco-insures-LR(Con-V , Ins) |
 mco-resilient(Con-V , SpePro) |
 …
 temporal metaconditions

 mco-primary(Con-V , MetPro-V) | MetPro-V ― metaprograms
 mco-induced(Con-V , MetPro-V) |
 …
 language-related metaconditions

 mco-immunizing(Con-V) |
 mco-immanent(Con-V) |
 …
 metaprograms

 mco-metaprogram(Con-V, SpePro-V, Con-V) |

compound metaconditions with classical operators

 mco-and(MetCon-V , MetCon-V) |
mco-or(MetCon-V , MetCon-V) |
mco-implies(MetCon-V , MetCon-V) |
mco-not(MetCon-V)

3.2 The denotations of Lingua-V

The algebra of denotations of Lingua-V is a direct extension of AlgDen described in [6] by the carriers corre-

sponding to new syntactic categories and the corresponding constructors. The new carriers are:

cod : ConDen-V = State → BoolE
asd : AsrDen-V = State → BoolE
sdd : SpeDecDen-V = State → State
sid : SpeInsDen-V = State → State
sct : SpeClaTraDen-V = State → State
spd : SpeProPreDen-V = State → State
spd : SpeProDen-V = State → State
mcd : MetConDen-V = {tt, ff}

The signatures of corresponding constructors can be derived from grammatical clauses of Sec. 3.1, e.g.:

cod-equal-int : ValExpDen-V x ValExpDen-V ⟼ ConDen-V
cod-less-int : ValExpDen-V x ValExpDen-V ⟼ ConDen-V
…
cod-is-typ : Identifier x TypExpDen-V ⟼ ConDen-V
cod-var-is-typ : Identifier x TypExpDen-V ⟼ ConDen-V

cod-proc-opened : Identifier x Identifier ⟼ ConDen-V
…
con-left-algorithmic : SpeProDen-V x ConDen-V ⟼ ConDen-V
con-right-algorithmic : ConDen-V x SpeProDen-V ⟼ ConDen-V

and similarly for the denotations of metaconditions:

mcd-stronger : ConDen-V x ConDen-V ⟼ MetConDen-V i.e.,

mcd-stronger : ConDen-V x ConDen-V ⟼ {tt, ff}

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 26

mcd-weak-equivalent : ConDen-V x ConDen-V ⟼ {tt, ff}
mcd-less-defined : ConDen-V x ConDen-V ⟼ {tt, ff}
mcd-strong-equivalent : ConDen-V x ConDen-V ⟼ {tt, ff}

mcd-insures-LR : ConDen-V x InsDen-V ⟼ {tt, ff}

mcd-resilient : ConDen-V x SpeProDen-V ⟼ {tt, ff}
mcd-primary : ConDen-V x MetPro-V ⟼ {tt, ff}
mcd-induced : ConDen-V x MetPro-V ⟼ {tt, ff}

Formalized definitions of these constructors can be easily inferred from their definitions in Sec. 9.2 and Sec. 9.3

of [6].

4 Defining Lingua-D

4.1 Individual variables in Lingua-D

Proceeding to Lingua-D, we define, first, the domains of variables. Let’s start with individual variables, which

for every sort of Lingua-V we define as a separate carrier. For simplicity, we write the corresponding grammat-

ical equations in a concrete-syntax style:

ide : IdeVar-D = {ide,…} variables corresponding to identifies,

vex : ValExpVar-D = {vex,…} variables corresponding to value-expressions,

rex : RefExpVar-D = {rex,…} variables corresponding to reference-expressions,

sin : SpeInsVar-D = {sin,…} variables corresponding to specinstructions,

con : ConVar-D = {con, prc, poc,…} variables corresponding to conditions,

…

mec : MetConVar-D = {mec,…} variables corresponding to metaconditions.

We also assume that all these individual variables may be “decorated” with arbitrary prefixes and postfixes. Note

that individual variables of Lingua-D are printed in Arial underlined to distinguish them from non-underlined

metavariables running over the syntactic domains of this language. For instance, vex is a metavariable running

over the syntactic domain ValExp-D, whereas vex is an element of the syntactic domain ValExpVar-D. As we

will see a little later, this distinction is essential.

4.2 Functional and predicational variables in Lingua-D

Whereas the introduction of individual variables is, in a sense, “unavoidable” ― for every carrier name cn : Cn-
VT, we introduce one carrier of variables ― the situation with non-individual variables is different:

• they have not only sorts but also arities and, therefore, within every sort of such variables we may have a

variety of variables with different arities,

• which second-order variables we shall need, will be seen only when we start writing second-order axioms.

We postpone, therefore, the introduction of second-order variables till the moment when they are needed. A case

where we will undoubtedly need second-order variables is the second-order axioms for integers. We must ensure

that all models of our formalized theory include standard models of integers, which are necessary to prove the

termination properties of programs.

4.3 Terms in Lingua-D

According to the rule described in Sec. 2.4, grammatical equations of Lingua-D are created from corresponding

equations of the source language by adding to each of them three categories of clauses:

1. one clause for the creation of single-variable terms with individual variables,

2. one clause for every functional variable that creates a term with this variable representing the root opera-

tion,

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 27

3. one clause for every predicational variable that creates a formula with this variable representing the root

predicate.

Since we have not introduced second-order variables so far, the modification of grammatical equations is limited

to point 1. We also slightly modify the (green) names of constructors to make them more intuitive8, and we use

individual variables associated with syntactic categories, e.g., vex, as metavariables running over these categories

(cf. Sec. 2.1.1). Let’s see a few examples (cf. Sec. 7.2 in [6]):

value expressions

vex : ValExp-D =

 vex-make-vex(ValExpVar-D) | single-variable term

vex-bo(BooleanSyn-D) |
 vex-in(IntegerSyn-D) |
 vex-re(RealSyn-D) |
 vex-te(TextSyn-D) |
 vex-variable(Ide-D) | single-identifier value-expression
 vex-attribute(ValExp-D , Ide-D) |
 vex-call-fun-pro(Ide-D, Ide-D, ActPar-D) |
 vex-add-int(ValExp-D , ValExp-D) |

vex-less-int(ValExp-D , ValExp-D) |
vex-or-m(ValExp-D , ValExp-D) | McCarthy’s alternative
vex-create-li(ValExp-D) |
vex-get-from-rc(ValExp-D , Ide-D) |
…

Note that we now have to suffix all the names of syntactic domains with -D, since they differ from those in

Lingua-V.

specified instructions

sin : SpeIns-D =

 sin-make-sin(SpeInsVar-D) | single-variable term

 sin-make-asr(Con-D) | assertions9

sin-skip-ins() |
sin-assign(RefExp-D , ValExp-D) |
sin-call-imp-pro(Ide-D , Ide-D , ActPar-D , ActPar-D) |
sin-call-obj-con(Ide-D , Ide-D , ActPar-D) |
sin-if(ValExp-D , SpeIns-D , SpeIns-D) |
sin-if-error(ValExp-D , SpeIns-D) |
sin-while(ValExp-D , SpeIns-D) |
sin-compose-ins(Ins-D , Ins-D)

 identifiers

ide : Ide-D =

 IdeVar-D |
Identifier

We recall that, according to our earlier convention, the elements of IdeVar-D are printed in black Arial, and the

elements of Identifier are printed in green Arial Narrow. We also bring to the attention of our readers that identifiers

in Lingua-D belong to the category of terms.

 conditions

con : Con-D =

 con-make-con(ConVar-D) | single-variable term

8 For instance, we replace the name prefix ved- (value-expression denotation) by vex- (value expression).
9 Our reader may guess why we abbreviate “assertion” as “asr” rather than “ass”.

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 28

 con-or-k(Con-D , Con-D) | Kleene’s alternative

 con-less-int(ValExp-D , ValExp-D) |
 con-is-value(ValExp-D) |
 con-is-free(Ide-D) |
 con-left-algorithmic(SpeIns-D , Con-D) |
 con-right-algorithmic(Con-D , SpePro-D) |

…

In the end, the domain of terms is defined as a union of all sort-oriented term domains, i.e.:

ter : Term-D = ValExp-D | SpeIns-D | Ide-D | Con-D | …

Examples of ground D-terms are the following (for simplicity, we omit the name of identifier-creating construc-

tors):

sin-assign(x, vex-divide-re(1, z))
vex-less(y, 0)
sin-while(vex-less-int(x, 0), sin-assign(x, vex-add-int(a, 1)))
sin-skip-ins

and examples of free terms are the following

sin-assign(rex, vex-divide-re(vex-1, vex-2))
vex-less(vex, 0)
sin-while(vex-less-int(vex-1, vex-2), sin-assign(rex, vex-add-int(vex-3, 1)))

4.4 Formulas in Lingua-D

Formulas in Lingua-D are metaconditions and their patterns, e.g.:

mec : MetCon-D =
mec-make-mec(MetConVar-D)
mec-stronger(Con-D , Con-D) |

 mec-weakly-equivalent(Con-D , Con-D) |
 mec-less-defined(Con-D , Con-D) |

mec-strongly-equivalent(Con-D , Con-D) |
mec-insures LR(Con-D , SpeIns-D) |
mec-hereditary(Con-D , MetPro-D) |
mec-immunizing(Con-D) |
mec-metaprogram(Con-D , SpePro , Con-D) |
…
mec-and(MetCon-D , MetCon-D) | classical conjunction
mec-or(MetCon-D , MetCon-D) |
mec-implies(MetCon-D , MetCon-D) |
mec-not(MetCon-D)

We recall that the logical operators in the above equations are 2-valued classical connectives and, therefore, we

write them without suffixes -m or -k. Examples of ground formulas in our theory are the following (for conven-

ience, we write them in concrete syntax):

√𝑥
2

 > 2  x > 4

or

pre nni(x, k) and-k n+1 ≤ M:
x := 0;
while x+1 ≤ n

do
x := x+1

od

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 29

post x = n

In turn, examples of free formulas, written in concrete syntax, are metaprogram construction rules such as

pre sin @ con
 sin
post con

or

pre prc-1: spr-1 post poc-1
pre prc-2: spr-2 post poc-2
poc-1  prc-2

pre prc-1: spr-1; spr-2 post poc-2
pre prc-1: spr-1; asr poc-1 rsa; spr-2 post poc-2
pre prc-1: spr-1; asr prc-2 rsa; spr-2 post poc-2

We recall that above the line and below the line, we have classical conjunctions of formulas, and the vertical

arrow represents classical implication. Another example of a free formula in Lingua-D may be

(mec1 and mec2) implies mec1

Of course, all these formulas are valid.

4.5 The denotations of Lingua-D

The algebra of denotations of Lingua-D can be “algorithmically” derived from the algebra of Lingua-V in a way

described in Sec. 2.4. In this section, we only sketch a way of doing this. Let’s start with valuations:

uni : Universe = IdeDen-D | TypExpDen-V | RefExpDen-V | ValExpDen-V | …
vlu : IndValuation ⊆ IndVar ⟼ Universe

vlu : FunValuation ⊆ FunVar ⟼ {fun | fun : Universec* ⟼ Universe}
vlu : PreValuation ⊆ PreVar ⟼ {pre | pre : Universec* ⟼ Bool}
vlu : Valuation ⊆ IndValuation | FunValuation | PreValuation

Every valuation vlu is sort-wise well-formed, e.g.:

if vex : ValExpVar-D,
then vlu.vex : ValExpDen-V.

At this moment, we do not introduce 2nd-order variables. The carriers of denotations in Lingua-D are the follow-

ing:

ved : ValExpDen-D = Valuation ⟼ ValExpDen-V
red : RefExpDen-D = Valuation ⟼ RefExpDen-V
ind : InsDen-D = Valuation ⟼ InsDen-V
spd : SpeProDen-D = Valuation ⟼ SpeProDen-V
ide : IdeDen-D = Ide-D
cod : ConDen-D = Valuation ⟼ ConDen-V
…
mcd : MetConDen-D = Valuation ⟼ MetConDen-V

An example of a constructor of D-denotations may be the following:

ind-assign-D : RefExpDen-D x ValExpDen-D ⟼ InsDen-D i.e.
ind-assign-D : RefExpDen-D x ValExpDen-D ⟼ Valuation ⟼ InsDen-V
ind-assign-D.(red, ved).vlu = ind-assign-v.(red.vlu, ved.vlu)

where ind-assign-v is a denotational constructor of instructions from Lingua-V. Another exemplary constructor

builds the denotation of a free metaprogram formula:

mcd-metaprogram-D : ConDen-D x SpeProDen-D x ConDen-D ⟼ MetConDen-D i.e.

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 30

mcd-metaprogram-D : ConDen-D x SpeProDen-D x ConDen-D ⟼ Valuation ⟼ {tt, ff}
mcd-metaprogram-D.(cod-1, spd, cod-2).val =
 mcd-stronger.(cod-1.val, con-left-algorithmic.(spd.val, con-2.val))

This definition, written in the metanotation used in Sec. 9.2.7 and Sec. 9.3.2 of [6], is as follows:

 mcd-metaprogram-D.(cod-1, spd, cod-2).val = cod-1.val  (spd.val)@(con-2.val)

Note that we are using non-underlined metavariables in this context.

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 31

5 A formalized theory of the denotations of Lingua-V

5.1 The structure of the theory

We assume that the denotational model of our source language, i.e., of Lingua-V, is represented by two algebras,

AlgSyn-V and AlgDen-V, with a homomorphism (semantics) between them (cf. Sec. 2.4). Our goal is to con-

struct such a D-theory whose language Lingua-D includes AlgSyn-V ― this has already been done in Sec. 4 ―

and whose set of models includes (an extension of)10 AlgDen-V.

As we will see, in our target D-theory, the categories of axioms and inference rules will be split into several

subcategories. The overall structure of this theory will be the following:

1. Language: Lingua-D.

2. Axioms:

a. axioms describing abstract mathematical entities such as numbers, sets, functions, etc.,

b. axioms describing values in Lingua-V, such as integer, real, and boolean values, list values, array

values, objects, etc.,

c. axioms describing Lingua-V denotations. i.e., the denotations of expressions, instructions, condi-

tions, metaconditions, etc.

3. Inference rules:

a. universal rules ― substitutions, detachment, generalization, etc.,

b. standard rules ― rules expressible by axioms,

c. non-standard rules ― rules not expressible by axioms.

Universal rules are significant for proving theorems of our theory, by which we mean that the removal of any of

them would make some valid formulas not provable. Standard rules are not significant, but, as we will see, they

may substantially speed up the process of program development. Non-standard rules play a similar role to stand-

ard rules, but further research may be necessary to determine if they are significant or not.

Regarding axioms, we shall concentrate on their third group, as the first group is pretty well-known in mathe-

matical logic, and the second should be easily derivable from them. In turn, the third group is highly dependent

on Lingua-V.

5.2 Denotation-oriented axioms

5.2.1 Program-independent axioms for metaconditions

Dependencies between metapredicates

(con1 ≡ con2) iff ((con1 ⊑ con2) and (con2 ⊑ con1))
(con1  con2) iff ((con1  con2) and (con2  con1))
(con1 ≡ con2) implies (con1  con2)

Definitions of ternary metapredicates

(con1 ≡ con2 whenever con) iff ((con and-k con1) ≡ (con and-k con2))
(con1  con2 whenever con) iff ((con and-k con1)  (con and-k con2))
(con1  con2 whenever con) iff ((con and-k con1)  (con and-k con2))

Relations ≡ and  are equivalences in the set of conditions

con ≡ con
(con1 ≡ con2) implies (con2 ≡ con1)

10 A target model of D-theory may include, as an algebra, more carriers and more constructors that may be needed to

formulate some axioms.

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 32

…

Relation ≡ is a congruence for and-k, or-k, and not-k

(con1 ≡ con2) implies ((con and-k con1) ≡ (con and-k con2))
…

Relation  is a congruence for and-k and or-k

(con1  con2) implies ((con and-k con1)  (con and-k con2))
…

Operators and-k and or-k are strongly and weakly commutative

(con1 and-k con2) ≡ (con2 and-k con1)
(con1 or-k con2) ≡ (con2 or-k con1)
(con1 and-k con2)  (con2 and-k con1)
(con1 or-k con2)  (con2 or-k con1)

The operator and-k is both strongly and weakly left-hand-side and right-hand-side distributive with respect

to or-k and vice versa.

(con1 and-k (con2 or-k con3)) ≡ ((con1 and-k con2) or-k (con1 and-k con3))
(con1 or-k (con2 and-k con3)) ≡ ((con1 or-k con2) and-k (con1 or-k con3))
((con2 or-k con3) and-k con1) ≡ ((con2 and-k con1) or-k (con3 and-k con1))
…

De Morgan’s laws for and-k and or-k and for the negation of quantifiers are satisfied with strong equiva-

lence and weak equivalence

not (con1 and-k con2) ≡ (not(con2) or-k not(con1))
not (con1 and-k con2)  (not(con2) or-k not(con1))
…

The nearly-true condition

error-transparent(con) implies (con  NT)

The relationship between the three implications:

error-sensitive(con1) and ((con1 implies-k con2) ≡ NT) implies (con1  con2))

5.2.2 Axioms corresponding to behavioral metaconditions

In this group, we show three examples of axioms:

different(ide1, ide2)

(ide1 is free) irrelevant for (let ide2 be tex)

different(ide1, ide2)

(ide1 is tex1) irrelevant for (let ide2 be tex2)

pre prc : sin post poc
con irrelevant for sin

pre prc and-k con : sin post poc and-k con

In all three cases, we have used a diagrammatic notation that improves the readability of formulas; however,

formally, they are implicative formulas in Lingua-D. We assume that the ad hoc introduced formula differ-
ent(ide1, ide2) is satisfied for a valuation vlu iff vlu.ide1 ≠ vlu.ide2, where ≠ compares two strings of characters.

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 33

Of course, to use this formula in our formalized theory, we have to characterize it axiomatically. One such axiom

will be

not different(ide, ide).

However, as we will see in Sec. 6.4.4.2, the axiomatization of different may be replaced by an “implemented”

procedure that compares two texts. For the denotation of irrelevant, see Sec. 9.3.4 of [6].

5.2.3 Axioms corresponding to temporal metaconditions

See Sec. 9.3.5 of [6].

not(ide is free) hereditary in mpr
(ide is free) co hereditary in mpr
(ide is tex) hereditary in mpr

5.2.4 Axioms corresponding to declarations

These axioms are formulated as lemmas in Sec. 9.4.4 of [6]. Correct metaprograms are constructed using these

rules and the substitution inference rule.

Axiom for variable declaration

pre (ide is free) and-k (tex is type)
let ide be tex tel

post var ide is tex

Axiom for an abstract attribute declaration

pre (ide-at is free) and-k (ide-cl is class) and-k (tex is type) :
let ide-at be tex with yex as pst tel in ide-cl

post att ide-at is tex in ide-cl as pst

Axiom for a type constant declaration

pre (ide-tc is free) and-k (ide-cl is class) and-k (tex is type) :
set ide-tc be tex tes in ide-cl

post ide-tc is tex

Axiom for an imperative pre-procedure declaration

pre (ide-pr is free) and-k (ide-cl is class)
proc ide-pr (val my-fpc-v ref my-fpc-r) my-body in ide-cl;

post pre-proc ide-pr (val my-fpc-v ref my-fpc-r) my-body imperative in ide-cl

Axiom for a declaration of a funding class

pre : (ide-cl is free) and-k (cli is class)
class ide-cl parent cli with skip-ctr ssalc

post ide-cl child of cli

Axiom for class declaration

pre prc : class ide parent cli with skip-ctr ssalc post pa-poc
pre pa-poc : ctr-1 in ide post (pa-poc and-k cr-poc-1)
pre (pa-poc and-k cr-poc-1) : ctr-2 in ide post (pa-poc and-k cr-poc-1 and-k cr-poc-2)
...

pre prc:

class ide parent cli with ctr-1; … ; ctr-k ssalc
post pa-poc and-k cr-poc-1 and-k cr-poc-2 and-k …

Here we have a scheme of an axiom whose parameter is the sequence of class transformation variables

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 34

ctr-1; … ;ctr-k

in the class declaration.

Axiom for the opening of procedures

pre
 pre-proc ide-pr-11 (val fpc-v-11 ref fpc-r-11) body-11 imperative in ide-cl-1 and-k

pre-proc ide-pr-12 (val fpc-v-12 ref fpc-r-12) body-12 imperative in ide-cl-1 and-k
…
pre-proc ide-pr-21 (val fpc-v-21 ref fpc-r-21) body-21 imperative in ide-cl-2 and-k
pre-proc ide-pr-22 (val fpc-v-22 ref fpc-r-22) body-22 imperative in ide-cl-2 and-k
…
open procedures

post
ide-cl-1.ide-pr-11 opened and-k
ide-cl-1.ide-pr-12 opened and-k

 …
ide-cl-2.ide-pr-21 opened and-k
ide-cl-2.ide-pr-22 opened and-k

 …

Here, as well, we have a scheme of an axiom, and this time the parameter is the number of pre-procedure decla-

rations.

5.2.5 @-axiom

There is only one axiom in this group (Sec. 9.4.6.2 of [6]):

pre sin @ con :
 sin
post con

5.2.6 Some standard implicative axioms

See Sec. 9.4.4 of [6].

Axiom for a final composition

pre prc : spp post (de-con and-k sp-con)
pre (de-con and-k sp-con) : open procedures post (de-con and-k op-con and-k sp-con)
pre (de-con and-k op-con and-k sp-con) : sin post (de-con and-k op-con and-k si-con)

pre prc:
 spp ; open procedures ; sin

post (de-con and-k op-con and-k si-con)

Axiom for strengthening preconditions

pre prc : spr post poc
prc-1  prc

pre prc-1 : spr post poc

Axiom for weakening postconditions

pre prc : spr post poc
poc  poc-1

pre prc : spr post poc-1

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 35

Axiom for conjunction and disjunction of conditions

pre prc-1 : spr post poc-1
pre prc-2 : spr post poc-2

pre (prc-1 and-k prc-2) : spr post (poc-1 and-k poc-2)
pre (prc-1 or-k prc-2) : spr post (poc-1 or-k poc-2)

Axiom for the propagation of an irrelevant condition

pre prc: spr post poc
con irrelevant for spr

pre (prc and-k con) : spr post (poc and-k con)

5.2.7 Implicative axioms for structural instructions

Axiom for sequential composition

pre prc-1: spr-1 post poc-1
pre prc-2: spr-2 post poc-2
poc-1  prc-2

pre prc-1: spr-1; spr-2 post poc-2
pre prc-1: spr-1; asr poc-1 rsa; spr-2 post poc-2
pre prc-1: spr-1; asr prc-2 rsa; spr-2 post poc-2

Axiom for conditional branching if-then-else-fi

pre (prc and-k vex) : sin1 post poc
pre (prc and-k (not-k vex)) : sin2 post poc
prc  (vex or-k (not-k vex))

pre prc : if vex then sin1 else sin2 fi post poc

Axiom for loop while-do-od

pre (inv and-k vex) : sin post inv
inv insures LR of asr vex rsa ; sin
prc  inv
inv  (vex or-k (not-k vex))
inv and-k (not-k vex)  poc

pre prc : asr inv rsa ; while vex do sin od post poc

5.3 Inference rules

5.3.1 Program-building rules versus inference rules

It is essential for our further investigations to understand a subtle difference between program-building construc-

tion rules and lemma-proving inference rules.

The former are formulated in a non-formalized M-theory, whose language is MetaSoft and where we freely

use arbitrary mathematical tools, such as set theory, classical logic, the theory of relations, and CPOs, among

others. It is formal, but not formalized. Construction rules of metaprograms are written in MetaSoft using a

diagrammatic notation like:

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 36

pre prc : spr post poc
prc1  prc

pre prc1 : spr post poc (5.3.1-1)

Formally, however, it is just a special presentation of a “usual” implicative formula:

((pre prc : spr post poc) and (prc1  prc)) implies (pre prc1 : spr post poc)

where logical connectives are classical.

Since this rule has been proved sound in [6], we may assume it to be an axiom of D-theory. However, since

an axiom must be a formula in Lingua-D, we rewrite our MetaSoft formula to the Lingua-D form:

(1) ((pre prc : spr post poc) and (prc1  prc)) implies (pre prc1 : spr post poc)

Assume further that in the set of axioms we have the following tautology:

(2) mec1 implies (mec2 implies (mec1 and mec2))

Let now for some concrete prc, spr, poc, and poc1 (note that these metavariables are not underlined), the fol-

lowing metaconditions are valid:

(3) pre prc : spr post poc

(4) prc1  prc

By substituting in (1) prc → prc, spr → spr, etc., we may include the following formula in the set of lemmas:

(5) ((pre prc : spr post poc) and (prc1  prc)) implies (pre prc1 : spr post poc)

Note that (5) does not represent itself, like (1), but a concrete formula (free or ground) in Lingua-D. By substi-

tuting in (2)

pre prc : spr post poc → mec1

prc1  prc → mec2

we may include

((pre prc : spr post poc) and (prc1  prc))

in the set of lemmas, hence, from (5) by detachment, we include in the set of lemmas the metacondition

pre prc1 : spr post poc.

Assume now that at the level of M-theory, the metaformula

|- for

expresses the fact that the formula for is a theorem or axiom in the D-theory. On the grounds of M-theory, our

reasoning described above may be expressed by the following metaformula:

|- (pre prc : spr post poc) and |- (prc-1  prc) implies |- (pre prc-1 : spr post poc)

where red-typed operators belong to the M-theory. This metaimplication, written in diagrammatic notation, looks

as follows:

|- pre prc : spr post poc
|- prc-1  prc

|- pre prc-1 : spr post poc (5.3.1-2)

Note that this metaformula is true only under the condition that (1) is an axiom. Note also that we have not

underlined variables in the rule, because our rule is a formula in M-theory. This observations is, of course, true

for all inference rules of D-theory.

Observe the difference between (5.3.1-1) and (5.3.1-2). The former represents an implication expressible by

an axiom in D-theory. The latter says that for arbitrary concrete prc, spr, poc, and poc1, if

pre prc : spr post poc and

prc-1  prc

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 37

are lemmas (in a repository), then the formula

pre prc-1 : spr post poc

may be added to the set of lemmas (to the repository). From the perspective of D-theory, the former is an axiom,

whereas the latter may be regarded as an inference rule. Although our two rules look similar, they belong to two

different worlds.

From a formal viewpoint, rule (5.3.1-2) does not add anything to the “proving power” of D-theory. In every

concrete situation, instead of using this rule, we could have repeated the construction (the reasoning) that leads

to that rule. However, from a practical perspective, it enables a significant shortening of the process of developing

correct metaprograms within our ecosystem.

In our example, we proceeded from a program-building rule in M-theory to an axiom in D-theory and from

that axiom to a lemma in M-theory, which may be regarded as an inference rule in D-theory. Our “construction

trace” was, therefore, the following:

informal construction rule → formal axiom → formal inference rule.

Such meta-construction may be repeated for all these program-building rules that are expressible as implications

in the D-theory. Note that these rules, being formulas in D-theory, may be proved sound on the grounds of this

theory, hence, in particular, using our future theorem prover.

It turns out, however, that not all program-building rules of M-theory may be transformed in that way into

inference rules of D-theory. That is the case for rules that can’t be expressed as formulas in D-theory. For ex-

ample, a rule which says (cf. Lemma 9.4.3-3 in Sec. 9.4.3 of [6]) that

in every correct metaprogram we can replace any assertion asr con rsa by asr con1 rsa under the conditions

that con ⟺ con1,

 can’t be expressed as an axiom (see Sec. 5.3.5 for more examples). In such a case, if we want to have that

rule “available” in D-theory, we have to introduce it as a non-standard inference rule (see again Sec. 5.3.5). In

other words, we skip the formal-axiom stage and proceed directly to an inference rule:

informal construction rule → formal inference rule.

In that case, we can’t use our theorem prover to prove the soundness of such a rule. We have to prove it “by hand”

on the grounds of M-theory.

5.3.2 Universal inference rules

For the case of abstract formalized theories, universal inference rules were sketched in Sec. 2.3. The rule of

detachment may be included in our D-theory (cf. Sec. 5.3.1) without any modifications, but others have to be

slightly “tuned” to take into account the fact that our theory is many-sorted. For instance, the rule of substitution

now has the following form:

|- mec
inv is free in mec
ter is sort of inv

|- mec[inv/ter]

The predicates is free and is sort of belong to the meta level, i.e., to M-theory. They are not expressible in

Lingua-D since they concern facts about syntactic elements of this language, i.e., facts about this language.

Note that the assumption inv is free in mec was present also in an abstract formulation of the rule (see Sec.

2.3), but the second assumption ― ter is sort of inv ― has been added to comply with the many-sortedness of

D-theory. The fact that we write both these requirements as parts of our rule, rather than as an “external” com-

mentary as in Sec. 2.3, is a matter of notational convention. The critical fact is that we do not write

|- inv is free in mec.

but

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 38

inv is free in mec

and the same for the other prerequisite.

At the level of our future ecosystem, both metapredicates will be implemented as procedures operating on (the

syntaxes of) mec, inv, and ter. Note that the implementation of ter is sort of inv is possible since the domain of

our individual variables has been split into sort-dependent categories (cf. Sec. 4.1).

Note also that in the substitution rule we use variables from the meta level, i.e., mec, inv, and ter, that repre-

sent variables running over arbitrary metaconditions, individual variables, and terms of Lingua-D, respectively.

For instance, from the axiom:

pre sin @ con : sin post con

we can generate, by substitution, a lemma:

pre ide := vex @ con : ide := vex post con (5.3.1-1)

and from this lemma, we can further generate a ground formula (another lemma):

pre x := y+1 @ x > 0 : x := y+1 post x > 0

but in this lemma, we can’t substitute anything for x or y since in the D-theory, they are ground terms rather than

free variables. If we want to replace y by z, we have to generate a new lemma from (5.3.1-1).

5.3.3 Not all construction rules are expressible as axioms

Theorems and lemmas formulated in the intuitive theory of program denotations, known as M-theory, outlined

in Sec. 9 of [6], were expressed in MetaSoft. In particular, program-construction rules like, e.g.,

pre ide := vex @ con :
 ide := vex (5.3.3-1)
post con

were expressed in this language, where ide, vex, and con denote arbitrary identifiers, value expressions, and

conditions, respectively. Based on this rule, we can prove the soundness of a new one:

pre type-compatible(ide, vex) and-k con[ide/vex]:
 ide := vex (5.3.3-2)
post con

where con[ide/vex] denotes con with all free occurrences of ide replaced by vex and type-compatible(ide, vex)
is a condition satisfied if ide and vex are of the same type (see Sec. 5.3.5.1). Both these rules are lemmas proved

on the ground of M-theory.

Let’s assume now that we want to include this lemma in the set of axioms of D-theory. A valid formula

corresponding to (5.3.3-1) would be the following:

pre ide := vex @ con :
 ide := vex (5.3.3-3)
post con

Using the inference rule of substitution, vex may be replaced by a value-expression-term ide + 1, thus getting a

new lemma:

pre ide := ide + 1 @ con :
 ide := ide + 1
post con

which is, again, a valid formula in D-theory.

Consider now (5.3.3-2). This MetaSoft lemma can’t be “transliterated” into a valid formula in Lingua-D,

since there is no term in this language that would correspond to con[ide/vex]. In this case, our MetaSoft lemma

must be introduced into M-theory as a non-standard inference rule. Such rules will be discussed in Sec. 5.3.5.

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 39

5.3.4 Standard inference rules

As we have seen in Sec. 5.3.1, every implicative axiom of D-theory “induces” an inference rule. This fact may

be formally described by the following (meta) theorem:

Theorem 5.3.4-1 If mec1 and mec2 are metaconditions in Lingua-D and

mec1

mec2 (i.e., mec1 implies mec2)

then the following inference rule is sound:

|- mec1

|- mec2 ■

Since our program-building rules usually have a conjunction of formulas above the line, the following theorem

may be useful as well:

Theorem 5.3.4-2 If

mec-1 and
… and
mec-n

mec

is in the repository, then the following inference rule is sound:

|- mec-1
…
|- mec-n

|- mec ■

5.3.5 Nonstandard inference rules

5.3.5.1 Assignment-instruction inference rule

As we have already noted in Sec. 5.2.2, not all program construction rules can be expressed as formulas in Lin-

gua-D. In such a case, we shorten the way

program-construction rule → metacondition → inference rule,

to

program-construction rule → inference rule.

Our first example is the derivation of a rule expressed by a metatheorem that ensures the correctness of all met-

aprograms of the following form:

pre type-compatible(ide, vex) and-k con[ide/vex] :
 ide := vex (5.3.5.1-1)
post con

To prove that, we start from a lemma that we should have in our repository,

pre sin @ con :
 sin
post con

from which, by substitution, we derive the next lemma:

pre ide := vex @ con :
 ide := vex
post con

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 40

Now, we want to transform the algorithmic precondition into a non-algorithmic one. To do this, we must move

out of the level of Lingua-D and continue our reasoning on a MetaSoft level. Initially, based on the rule of

substitution, we may derive the following M-theory rule, which is, in fact, a scheme of a rule.

First Assignment Rule: For each identifier ide, value expression vex, and condition con, the following met-

aprogram is correct:

pre ide := vex @ con :
 ide := vex
post con

Here, we have replaced underlined D-variables by not-underlined metavariables that run over concrete ground

identifiers, value expressions, and conditions. Note ― they are concrete, grounded, but arbitrary.

Now, to eliminate @ from the precondition, we apply the following nonstandard rule:

Second Assignment Rule: For each identifier ide, value expression vex, and condition con, the following met-

acondition is satisfied:

type-compatible(ide, vex) and-k con[ide/vex]  (ide := vex @ con)

where con[ide/vex] denotes condition con where all free occurrences of ide were replaced by vex.

We skip a formal definition of con[ide/vex], which must refer to the recursive definition of the syntax of

conditions. Note that in this case, ide is a value variable in con.

The denotation of the ad-hoc introduced predicate type-compatible is defined as follows:

type-compatible(ide, ved).sta =
 is-error.sta ➔ error.sta
 ved.sta = ? ➔ ?

ved.sta : Error ➔ sta ◄ ved.sta
let

((cle, pre, cov), (obn, dep, st-ota, sft, ‘OK’)) = sta
 val = ved.sta
 (tok, (typ, re-ota)) = obn.ide
 re-ota ≠ $ and re-ota ≠ st-ota ➔ sta ◄ ‘reference not visible’
 not ref VRA.cov val ➔ sta ◄ ‘incompatibility of types’
 true ➔ (tt, ‘boolean’)

The proof of the Second Assignment Rule requires a rather laborious argument carried out by induction on the

syntactic definition of conditions in Lingua-V. Our excuse for skipping this proof is that we have not (yet) fully

defined the syntax of conditions. A practical lesson derived from this exercise is that our conditions should be

defined in a way that makes our rule sound.

It may be worth noticing in this place that “usually” the satisfaction of con[ide/vex] implies that ide is type-

compatible with vex, since otherwise con[ide/vex] would evaluate to an error. However, in some cases, this

claim may be unjustified. One such case is where ide does not appear in con and, therefore, con[ide/vex] =
con. In that case, con may be satisfied, although ide := vex may generate a typing error. Another case is where

ide appears in con, but will never be evaluated, like in:

if x > x+1 then ide+1 else x+1 fi > 0

These arguments justify the use of metapredicate type-compatible(ide, vex) in the Second Rule. Using that rule

and the rule of strengthening preconditions, we may finally derive the third rule.

Third Assignment Rule: For each identifier ide, value expression vex, and condition con, the following met-

aprogram is correct:

pre type-compatible(ide, vex) and-k con[ide/vex]:
 ide := vex
post con

This rule is nonstandard since it is not a D-formula:

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 41

• the script “con[ide/vex]” is not a condition,

• the rule is, in fact, a scheme of a rule where ide, con, and vex are metavariables quantified by a general

quantifier.

From this metatheorem, we derive the following nonstandard inference rule:

|- true

|- type-compatible(ide, vex) and con[ide/vex]:
 ide := vex
 post con

In this case, the use of the sign |- below the line does not denote the validity of a formula ― note that the script

under |- is not a formula ― but the fact that once ide, vex, con and con[ide/vex] are replaced by concrete terms

(although not necessarily ground), then the formula generated in this way is valid and, therefore, may be stored

in the repository.

The purpose of writing |- true above the line is only to make our rule an implicative one.

5.3.5.2 The removal of an assertion

The following nonstandard rule expresses the fact that the removal of an assertion from a correct metaprogram

with an error-sensitive postcondition does not violate the correctness of this program (for error sensitivity see

Sec. 9.2.1 of [6]):

|- pre prc : head ; asr con rsa ; tail post poc
|- error-sensitive(poc)

|- pre prc : head ; tail post poc

Here, we assume that the phrase above the line represents a metaprogram; hence, the phrase below the line also

represents a metaprogram.

5.3.5.3 The replacement of a condition in an assertion by a weakly equivalent one

The following diagram may describe this rule:

|- pre prc : head ; asr con1 rsa ; tail post poc
|- con1  con2
|- error-sensitive(poc)

|- pre prc : head ; asr con2 rsa ; tail post poc

This rule is to be understood similarly to the former.

5.3.5.4 The call of an imperative procedure

|- prc-call  myProc (val fpa-v ref fpa-r) my-body imperative in MyClass
|- prc-call  (pass actual val apa-v ref apa-r to formal val fpa-v ref fpa-r with MyClass) @ prc-body
|- prc-call  procedure MyClass.myProc is opened

|- prc-call  coe is current
|- prc-body  my-body @ poc-body
|- poc-body  fpa-r well-valued in coe
|- poc-body[fpa-r/apa-r]  poc-call

|- pre prc-call :
 call MyClass.myProc (val apa-v ref apa-r)

 post poc-call

Other examples of nonstandard rules may be the following:

1. the replacement of a boolean value-expression in a program by a strongly equivalent expression,

2. the introduction of an assertion block into a program (see Sec. 9.5.1 of [6]),

3. adding a register identifier to a program (see Sec. 9.5.3 of [6]).

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 42

This list is certainly not complete.

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 43

6 Denotational models of ecosystems

6.1 Primary and secondary ecosystems

In this section, we outline our vision of an ecosystem that can assist programmers developing programs in Lin-

gua-V (or a similar language). We do not attempt to provide a comprehensive description of such a system;

instead, we aim to outline the primary directions of its development. We illustrate our general investigations with

a few examples.

The category of ecosystems that we shall describe below, we shall refer to as primary ecosystems. In such

ecosystems, programmers are dynamically building metaprograms and their components using a fixed set of

construction rules. Precisely speaking, they are given an initial repository of valid metaconditions written in Lin-

gua-D, and they build and store new valid metaconditions in the repository. All elements of these repositories

will be referred to as lemmas and will be given individual names. Although some of them will be initially assumed

as axioms, from the perspective of programmers, assumed axioms and proved lemmas will be used in the same

way, and therefore, we shall call them all lemmas.

The only tools used by programmers in deriving new lemmas from the existing ones will be actions. Each

metacondition-creating action will represent an individual inference rule. Formally, the denotations of actions

will be operations that, given the names of some lemmas in the repository, derive a new lemma using a chosen

rule. E.g., an action assigned to the rule of detachment will be given three names and will:

1. identify lemmas assigned to the first two names,

2. check if they are of appropriate syntactic structures,

3. detach and store in the repository the target lemma under the third name.

In primary ecosystems, programmers can’t create new actions ― they can only use the existing ones. Since all

actions represent, by definition, sound construction rules, programmers who use primary ecosystems can’t de-

velop incorrect programs. Of course, it may also happen that they are unable to create the metaprograms they

want.

The impossibility of developing an intended program, or the difficulty in doing so, may also be due to the lack

of appropriate rules, i.e., actions. In that case, we temporarily assume that a new action can be added by a system

superuser, who takes responsibility for its soundness. Formally, such a superuser modifies the current Lingua-E

and must prove that the new rule is sound. This approach may be suitable at an early stage of developing our

experimental ecosystem.

Once a primary ecosystem is built and verified by a sufficient number of examples, we can begin to consider

secondary ecosystems where actions are user-definable and storable, such as procedures. Such ecosystems should

be based on a higher-order formalized theory, D2-theory, which is grounded in a language, Lingua-D2, allowing

us to formulate and prove the soundness of the inference rules of D-theory.

In this paper, we focus on primitive ecosystems. We believe that some “substantial” experiments with primi-

tive systems should precede any research on secondary systems.

6.2 Repositories and actions

In a primary ecosystem viewed as a programming language Lingua-E, where repositories play the roles of states,

the denotations of instructions, referred to as actions, are functions that modify repositories. In Sec. 6, we shall

describe only the algebra of denotations AlgDen-E, since the derivation of syntax is, in this case, straightforward.

We start by formalizing the concept of a repository, and to do that, we introduce three domains:

car : Character = {a, b, c, …, A, B, C,…, 0, 1,…,9, (,), …}
nam : Name = Characterc+ the names of elements stored in repository

rep : Repository = Name ⟹ (ValMetCon-D | Con-D).

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 44

We assume that all metaconditions stored in repositories are valid and may be grounded or free. In repositories,

we shall also store conditions to allow for using their acronyms (names) in the developed metaprograms in place

of long conditions (examples in Sec. 6.5). An example of a free metacondition to be stored in a repository may

be the following:

pre (ide is free) and-k (tex is type)
let ide be tex tel

post var ide is tex

It represents an atomic standard program-construction rule as described in Sec. 9.4.4 of [6]. An example of a

corresponding ground metacondition may be

pre (x is free) and-k (integer is type)
let x be integer tel

post var x is integer

6.3 Carriers of the algebra of denotations

We assume that the algebra of denotations AlgDen-E will have the following carriers:

tex : Text = Characterc+
nam : Name = Text

svd : SubVecDen = IndVal-D ⟹ Text the denotations of substitution vectors

acd : ActDen = Repository ⟼ Repository | Error the denotations of actions

inv : IndVar-D = variables of Lingua-D

Following our categorization of inference rules (Sec. 5.3.1), we split actions into three categories:

• basic actions ― actions derivable from basic inference rules,

• standard actions ― actions derivable from standard inference rules,

• nonstandard actions ― actions derivable from nonstandard inference rules.

Since we have assumed that the formulas stored in repositories are valid, all reachable actions must ensure this

requirement is met.

6.4 Constructors of the algebra of denotations

6.4.1 Auxiliary functions

We shall need two functions:

free : IndVar-D x MetCon-D ⟼ {tt, ff} variable is free in metacondition

matching : IndVar-D x Text ⟼ {‘OK’} | Error the sort of a variable matches the sort of text

We assume that the first function returns ff also in the case where a variable does not appear in the metacondition.

The second function is more sophisticated. It recognizes the sort of a variable and then performs a parsing

procedure of the textual argument to identify its sort. The existence of this function in our model implies that the

future implementation of the ecosystem must be equipped with an intelligent editor built on the grammar of

Lingua-D, i.e., it must include its parser.

6.4.2 Constructors of substitution vectors

Substitution vectors are defined as arbitrary mappings from individual variables to texts, but reachable substitu-

tion vectors should comply with the compatibility of the sorts of variables with the sorts of associated texts. First

function builds a simple substitution vector:

create-sub : IndVar-D x Text ⟼ SubVecDen
create-sub(inv, ter) =

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 45

 not matching(inv, tex) ➔ ‘matching not satisfied’
 true ➔ [inv/tex]

The next function expands a given substitution vector by a new component:

expand-sub : SubVecDen x IndVar-D x Text ⟼ SubVecDen
expand-sub.(sub, inv, tex) =
 sub.inv = ! ➔ ‘variable already assigned’
 not matching(inv, tex) ➔ ‘matching not satisfied’
 true ➔ sub[inv/ter]

6.4.3 Constructors of basic actions

6.4.3.1 Substitution actions

Let’s recall the rule of substitution:

|- mec
inv is free in mec
ter is sort of inv

|- mec[inv/ter]

To define the corresponding action, we shall need some auxiliary concepts. For any metacondition mec, any text

tex, and any individual variable inv (inv runs over ide, rex, vex, etc.) by

mec[inv/tex]

we denote the result of the substitution of tex for all free occurrences of inv in mec. If inv is not free in mec, or

does not appear in mec, then mec[inv/tex] = mec. The next function does the same, but checks if the substitution

is sort-wise legal:

swap : IndVar-D x Text ⟼ MetCon-D ⟼ MetCon-D | Error
swap.(inv, tex).mec =
 not free.(inv, mec) ➔ ‘variable not free’

not matching(inv, tex) ➔ ‘matching not satisfied’
 true ➔ mec[inv/tex]

Note that this function returns an error if the result of the swapping does not belong to MetCon-D. This situation

will occur if the type of inv is different from the type of ter. The following function swaps several free variables

for texts one after another.

replace : SubVecDen ⟼ MetCon-D ⟼ MetCon-D | Error
replace.svd.mec =
 let
 [inv-1/tex-1,…,inv-n/tex-n] = svd

mec-1 = swap.(inv-1,tex-1).mec
 mec-i = for i = 2;n
 mec-(i-1) : Error ➔ mec-(i-1)
 true ➔ swap.(inv-i/tex-i).mec-(i-1)
 true ➔ mec-n

Now we are prepared to define the constructor of the actions of substitution. It takes three arguments:

• nam-s ― source-formula name

• svd ― substitution-vector denotation,

• nam-t ― target-formula name,

and returns a function that modifies repositories:

substitute : Name x SubVecDen x Name ⟼ ActDen i.e.

substitute : Name x SubVecDen x Name ⟼ Repository ⟼ Repository | Error

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 46

sub-gro.(nam-s, svd, nam-t).rep = -s – source, -t – target

rep.nam-s = ? ➔ ‘no source metacondition’
 rep.nam-t = ! ➔ ‘target name already assigned’
 let
 so-mec = rep.nam-s
 ta-mec = replace.svd.so-mec
 ta-mec : Error ➔ ta-mec
 true ➔ (rep[nam-t/ta-mec], rdi)

This function:

1. checks if the source identifier points to a metacondition,

2. checks if the target identifier is not already assigned,

3. gets the source metacondition,

4. performs the indicated replacement and checks if the result is not an error,

5. modifies the current repository by storing in it the target metacondition under the target identifier.

6.4.3.2 Detachment actions

The detachment rule is the following:

|- mec1
|- (mec1 implies mec2)

|- mec2

To define a corresponding action, let’s start by introducing an auxiliary function:

root : MetCon-D ⟼ {‘and’, ‘or’, ‘implies’, ‘not’, ‘nil’}
root.mec =
 mec = and(mec-1, mec-2) ➔ ‘and’
 …

This function returns the name of the root operator of a compound metacondition (i.e., the top operator of the

parsing tree of the metacondition) and ‘nil’ for an atomic metacondition. The following constructor creates an

action that generates a valid formula and stores it in the current repository.

detach : Name x Name x Name ⟼ ActDen
detach : Name x Name x Name ⟼ Repository ⟼ Repository | Error

detach.(nam-p, nam-i, nam-t).rep = -p – prerequisite, -i – implication, -c – conclusion
 rep.nam-p = ? ➔ ‘no prerequisite metacondition’
 rep.nam-i = ? ➔ ‘no implication metacondition’
 rep.nam-c = ! ➔ ‘conclusion name already assigned’
 let
 mec-p = rep.nam-p

mec-i = rep.nam-i
root.mec-i ≠ implies ➔ ‘implication expected’
let

implies(mec-ps, mec-co) = mec-i ps- “premise”, co- “conclusion”

 mec-p ≠ mec-ps ➔ ‘prerequisite inadequate’
 true ➔ (rep[nam-c/mec-co], rdi)

Note that the validity of mec-co follows from the rule of detachment and the facts that mec-p and mec-i are in

the repository, i.e., are valid. The sign ≠ denotes the inequality of texts.

6.4.4 Constructors of standard actions

6.4.4.1 Strengthening-precondition action

Based on the rule derived in Sec. 5.3.4, we define the following constructor of actions:

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 47

strengthen-pre : Name x Name x Name ⟼ Repository ⟼ Repository | Error
strengthen-pre.(nam-m, nam-s, nam-t).rep = -m – metaprogram, -s – stronger, -t – target
 rep.nam-m = ? ➔ ‘no prerequisite metaprogram’
 rep.nam-s = ? ➔ ‘no stronger-than metacondition’
 rep.nam-t = ! ➔ ‘target name already assigned’
 not is-metaprogram.(rep.nam-m) ➔ ‘metaprogram expected’
 root.(rep.nam-s) ≠  ➔ ‘a stronger-than metacondition expected’
 let
 pre prc : spr post poc = rep.nam-m
 prc1 con = rep.nam-s
 con ≠ prc ➔ ‘conclusion not adequate’
 let
 new-mec = pre prc1 : spr post poc
 true ➔ rep[nam-t/new-mec]

In this definition, we have introduced two new parsing-oriented techniques. One is a textual predicate is-met-
aprogram which checks if a given piece of text is a metaprogram. It belongs to the same category as the function

root. The second technique is more sophisticated and is included in the let-declaration

let
 pre prc : spr post poc = rep.nam-m
 prc1 con = rep.nam-s.

It is understood as a description of the following parsing-based algorithm that creates the following local substi-

tution vector:

pre-con  prc
spec-prg  spr
post-con  poc
stronger-pre-con  prc1
condition  con

and then uses it in synthesizing the target metaprogram.

Of course, to apply the strengthening-precondition action, we must store earlier in the repository appropriate

valid metaconditions of the form con1  con2 (note that the D-formula con1  con2 is, of course, not valid).

Examples of valid stronger-than metaconditions may be the following:

(ide is integer)  (ide < ide+1)
(ide1 is integer) and (ide2 is integer) and (ide1 < ide2)  (ide1+1 < ide2+1)
(x is integer)  (x < x+1)
y := x+1 @ (var x is integer) and-k (var y is integer) and-k (y = 4) 

(var x is integer) and-k (var y is integer) and-k (x=3)

6.4.4.2 Adding irrelevant conditions

If we need to add an irrelevant condition to a pre- and post-condition of a program ― this may happen when we

are adding an underivable condition ― we have to use an action derived from the following construction rule:

pre prc: spr post poc
con irrelevant-for (pre prc: spr post poc)

pre (prc and-k con) : spr post (poc and-k con)

To do that, analogously as in the case described in Sec. 6.4.4.1, we must previously store in the repository appro-

priate lemmas about irrelevant-for metacondition, such as, e.g., (cf. Sec. 2.2):

different(ide1, ide2) implies ((ide1 is free) irrelevant-for (let ide2 be tex tel)). (6.4.4.2-1)

The denotation of the ad-hock introduced metacondition different(ide1, ide2) is the following:

different.(ide1, ide2).vlu =

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 48

 vlu.ide1 ≠ vlu.ide2 ➔ true
 true ➔ false

where vlu is a valuation (see Sec. 2.3) and relation ≠ compares two strings of characters.

Let’s see how to apply this rule by executing a corresponding action to add a condition (var x is integer) to the

metaprogram

pre (y is free)
let y be integer tel

post (var y is integer)

To do that, we identify lemma (6.4.4.2-1) in the repository, and we apply to it a substitution action with the

following vector:

ide1  x
ide2  y
tex  integer

thus getting

different(x, y) implies ((x is free) irrelevant for (let y be integer))

At this moment, we, of course, would like to use detachment, but can we expect that different(x, y) is in the

repository? To achieve that, we should have derived it from some axioms about the inequality of character strings.

In this case, we might use our theorem prover; however, a more straightforward solution may be to employ a

procedure that compares two strings of characters. Note that we may proceed analogously when we want to prove

the validity of, say, 8 < 10 (cf. Sec. 2.3). Such shortenings of a formalized route would not be acceptable if we

were building a “self-standing” theorem prover. Still, in our situation, we may accept a hybrid solution, as all we

need is a vehicle for justifying the formulas.

The expected constructor of actions is the following:

add-irrelevant : Name x Name x Name ⟼ Repository ⟼ Repository | Error
add-irrelevant.(nam-m, nam-i, nam-t).rep = -m – metaprogram, -i – irrelevant, -t – target

 rep.nam-m = ? ➔ ‘no prerequisite metaprogram’
 rep.nam-i = ? ➔ ‘no irrelevant-for metacondition’
 rep.nam-t = ! ➔ ‘target name already assigned’
 not is-metaprogram.(rep.nam-m) ➔ ‘metaprogram expected’

root.(rep.nam-s) ≠ irrelevant-for ➔ ‘an irrelevant-for metacondition expected’
 let
 pre prc : spr post poc = rep.nam-m
 con irrelevant-for (pre prc: spr post poc) = rep.nam-i
 new-mec = pre (prc and-k con) : spr post (poc and-k con)
 true ➔ rep[nam-t/new-mec]

This definition is similar to the one of strengthen-pre in Sec. 6.4.4.1. It involves parsing and pattern-matching

techniques.

6.4.5 Constructors of nonstandard actions

6.4.5.1 Assignment-creation action

In this case, we implement the program-construction rule developed in Sec. 5.3.5.1. The corresponding construc-

tor is the following:

assign : Identifier x Text x Name x Name ⟼ Repository ⟼ Repository | Error
assign.(ide, tex, nam-c, nam-t).rep = -c – condition, -t – target

 rep.nam-t = ? ➔ ‘target name already assigned’
 not is-value-expression.tex ➔ ’value expression expected’
 let

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 49

 con = rep.nam-c
 new-con = con[ide/tex] see Sec. 5.3.3.1

 asi-program = pre con[ide/vex] and-k type-compatible(ide, vex) : ide := vex post con

true ➔ rep[nam-t/asi-program]

In this case, one of the arguments is a text that is supposed to be a value expression. Since this argument is written

by a programmer “from the keyboard”, the action is equipped with a parsing engine is-value-expression that

checks the syntactic correctness of this argument.

6.4.5.2 Proving action

Implementationally, this “singular” action activates a theorem prover which attempts to prove the validity of a

given metacondition. We include it in the category of nonstandard actions, although it is not associated with any

single inference rule, but, in a sense, with all of them. It will be used to prove the validity of these formulas,

which can’t be derived ― or which a programmer is unable to derive ― from the formulas stored in the reposi-

tory.

To define the corresponding constructor, we assume that we have in our model a partial function that represents

a theorem prover:

valid : MetCon-D → {YES, NO]

This function is partial, as the validity of formulas in our theory is undecidable; that is, no algorithm can determine

whether a given formula is valid or not11. The constructor of the corresponding action is the following:

prove : Text x Name ⟼ Repository → Repository | Error
prove.(tex, nam).rep =
 not is-metacondition.tex ➔ “the argument is not a metacondition’

valid.mec = ? ➔ ?
valid.mec = ‘NO’ ➔ ‘metacondition not valid’
true ➔ rep[nam/mec]

This action first checks if the argument text is a metacondition and, if so, attempts to prove its validity.

6.5 An example of a program’s derivation ― bubble sort

Bubble sort is a well-known program that sorts an array “in situ”, i.e., without using additional memory resources.

It uses two pointers that are moving along the array being sorted. Initially, both pointers are in their starting

positions, where i = j = 0.

Next, in every iteration of an outer loop, pointer i is incremented by 1, and pointer j is moved to the position of i.
At this moment, the array is sorted from 0 to i, possibly except the j’s element (the bubble). We say that the array

is sorted from 0 to i, but j, and this property is an invariant of an inner loop where pointer j, together with the

assigned element, is moved step-by-step to the left. This happens as long as j’s element is smaller than its (j-1)’s

neighbor. Once that is not the case, our program stops moving j since the array is already sorted from 0 to i. In

Fig. 6.5-1, our array is sorted from 0 to 4, but 2.

11 Kurt Gödel proved in 1931 that all theories that “include” arithmetic are undecidable.

-1 6 1 8 9 3 2

0 1 2 3 4 5 6

j i

Fig. 6.5-1 Bubble sort

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 50

The program that we intend to develop is the following:

pre (constant source is array of integer) and-k (len(source) > 0) :
let n, i, j be integer tel ;
let arr be array of integer tel ;
read source into arr daer ; n := len(arr) ; i := 0 ; j := 0;
while i < n # sorting from 0 to i+1
 do

asr (arr sorted from 0 to i) and-k permutation(arr, source) and-k (0 ≤ j ≤ i ≤ n) ;
 i := i+1;

j := i ;
 while arr[j-1] > arr[j]
 do

asr (arr sorted from 0 to i but j) and-k permutation(arr, source) and-k (0 ≤ j ≤ i ≤ n) rsa ;
swap(arr, j - 1, j) ;
j := j - 1 ;
asr (arr sorted from 0 to i but j) and-k permutation(arr, source) and-k (0 ≤ j ≤ i ≤ n) rsa ;

od ;
asr sorted(arr, 0, i) and-k permutation(arr, source) and-k (0 ≤ j ≤ i ≤ n) rsa ;

od ;
asr (arr sorted from 0 to i) and-k permutation(arr, source) and-k (i=n)

post sorted(arr, 0, n) and-k permutation(arr, source)

To construct this program, we assume that Lingua-V has been enriched by the concept of a constant and associ-

ated with it a constant’s predicate of the form:

constant ide is tex

where tex is a type expression. This predicate is satisfied in a state if ide has been (somehow) marked as a

constant of type indicated by tex in this state. We assume further that the only way a constant may be used in the

program component of a metaprogram is in a reading instruction of the form:

read ide1 into ide2 daer

where ide1 is a constant and ide2 is a declared variable12. For this instruction to be executed cleanly in a state,

ide1 must be a constant of the type of ide2. We assume further to have an array-oriented instruction:

swap(arr, j)

that swaps two adjacent elements arr[j-1] with arr[j] in array, and expression

len(ide)

that returns the length of the value of ide, provided that it is an array. We also assume to be given three array-

oriented predicates (for simplicity, we define them using variables appearing in our program):

permutation(arr, source) ― array arr is a permutation of array source,

sorted(arr, j, i) ≡ (def) 0 ≤ j < i ≤ len(arr) and-k (∀k : j ≤ k < i) (arr[k] ≤ arr[k+1])
arr sorted from 0 to i but j ≡ (def) if j = 0 then sorted(arr, 0, i) else sorted(arr, 0, j-1) and-k sorted(arr, j+1, i) fi

Below, we present a two-column table that documents the development of our program. The elements of the

domain Name are typed in Times New Roman italics. We use these names not only to name the repository’s

items, but also when “calling” them in other items.

In our example, we concentrate more on the “logistics” of program development than on its logic. Therefore,

we justify some steps solely by intuitive arguments. To save space, we omit vertical arrows in the rules, as they

are all unidirectional in our case.

12 To formally build the mechanism of constants into Lingua-V we have to redefine the denotations of assignments,

expressions, procedure calls and conditions. Since it is fairly clear, how to do it, we skip this issue.

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 51

COMMENTS REPOSITORY

We introduce a named condition into

the repository. In this case, we do not

need to prove or derive anything; in-

stead, we assume that our editor will

verify the syntactic correctness of the

introduced condition. We also assume

that the condition var arr is array is im-

plicit in the condition

permutation(arr, source).

We identify the while-axiom in the re-

pository.

By an action of substitution, we gener-

ate the while-lemma1.

In the following steps, we have to de-

rive all five metaconditions above the

line of the while-lemma. We skip easy,

but laborious, details, noticing only

that invariant implies j ≥ 0 that, in

turn, ensures the limited replicability

(LR) of the body of the loop (see Sec.

9.3.4 of [6]).

To derive the inner-loop from the

while-lemma, we apply two actions:

• detachment,

• the omission of an assertion in

a correct metaprogram.

Now, we proceed to the creation of the

outer loop. The general lemma we

need now is while-lemma 2.0. We

have to generate it or find it in the re-

pository. Here

body neutral for ide1

means that the execution of the body

does not alter the value of ide1.

invariant ::

(constant source is array of integer) and-k (var i, j, n is integer) and-k
(len(arr) = n) and-k (0 ≤ i ≤ j ≤ n) and-k (n > 0) and-k
(arr sorted from 0 to i but j) and-k permutation(arr, source)

while-axiom ::

pre (inv and-k vex) : sin post inv and
inv insures LR of asr vex rsa ; sin and
prc  inv and
inv  (vex or-k (not-k vex)) and
inv and-k (not-k vex))  poc

pre prc : asr inv rsa ; while vex do sin od post poc

while-lemma1 ::

pre (invariant and-k arr[j-1] > arr[j]) :
 swap(arr, j - 1, j) ; j:= j-1
post invariant and
invariant insures LR of asr arr[j-1] > arr[j] rsa ;
 swap(arr, j - 1, j) ; j:= j-1 and
invariant  invariant and
invariant  (arr[j-1] > arr[j] or-k (not-k arr[j-1] > arr[j])) and
invariant and-k (not-k arr[j-1] > arr[j]))  invariant and-k sorted(arr, 0, i)

pre invariant :
 asr invariant rsa ;
 while arr[j-1] > arr[j] do swap(arr, j - 1, j) ; j:= j-1 od
post invariant and-k sorted(arr, 0, i)

inner-loop ::

pre invariant :
 while arr[j-1] > arr[j] do swap(arr, j - 1, j) ; j:= j-1 od
post invariant and-k sorted(arr, 0, i)

while-lemma2.0 ::

pre inc and-k (ide1 < ide2) : ide1 := ide1+1 ; body post inc and
inc  ide1 < ide2 or-k ide1 ≥ ide2 and

body neutral for ide1

pre inc end-k (ide1 < ide2) :
while ide1 < ide2 do ide1 := ide1 + 1 ; body od

post inc end-k (ide1 = ide2)

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 52

From this lemma, by appropriate sub-

stitutions (body is replaced by inner-

loop), we get while-lemma2.1

From while-lemma2.1, we obtain the

result by detachment of the outer loop.

In the last but one step, we generate

the preamble program.

In the last step, we sequentially com-

bine the preamble with the outer loop,

getting in this way our target program

in a “compact form”, i.e., with

metanames. We can use it in this form

in further work, or “unfold” the names

by a substitution action if we want to

run our program immediately.

while-lemma2.1 ::

pre invariant and-k (i < n) :
 i := i + 1 ; inner-loop
post invariant and-k sorted(arr, 0, i) and
invariant  i > n or-k i ≤ n and

inner-body neutral for i

pre invariant end-k (i < n) :
while i < n do i:= i + 1 ; inner-loop od

post invariant end-k (i= n)

outer-loop ::

pre invariant end-k (i < n) :
while i < n do i:= i + 1 ; inner-loop od

post invariant end-k (i = n)

preamble ::

pre (constant source is array of integer) and-k (len(source) > 0) :
let n, i, j be integer tel ;
let arr be array of integer tel ;
read source into arr daer ;
n := len(arr) ;
i := 0 ;
j := 0

post invariant end-k (i < n)

6.6 A hybrid scenario of the development of prime repositories

As we already mentioned in Sec. 2.3, we shall not attempt to make our repository (the set of axioms) logically

complete. On the other hand, we must ensure that it is consistent and, at the same time, “sufficiently complete”

to make sufficiently many lemmas provable. We propose the following ad hoc scenario to achieve this goal:

1. We establish two folders in the repository of the ecosystem: one for lemmas (valid formulas) and condi-

tions, and another one for inference rules. In the case of standard inference rules, both, the rule and the

corresponding lemma, are stored in the corresponding folders.

2. We initialize the folder of lemmas with some commonly known mathematical axioms and lemmas that

we can derive from them. This initial repository should include all (currently) known to us lemmas ex-

pressible in Lingua-D.

3. We initialize the folder of inference rules with basic inference rules plus these standard and nonstandard

inference rules, the soundness of which we have proved.

4. While working with the ecosystem, we add to it new lemmas and new inference rules under the condition

that we prove their validity or soundness, respectively, either within our formalized D-theory or within

the metatheory M-theory.

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 53

7 A comparison of Lingua-V with Dafny

Contrary to Lingua-V, which is today only a sketch of a future language, the Dafny project is based on an

implemented programming language. The syntax of this language is formally defined by a BNF-like grammar,

but its semantic is described only informally and mainly by examples. Along with this language, Dafny offers an

ecosystem within Visual Studio Code, as well as a system for proving program correctness. The latter is based

on Hoare-like proof rules that are tacitly assumed to be adequate for the languages. In other words, Dafny is

assumed to be implemented in a way that guarantees the soundness of these rules, rather than being proved to be

so. The process of proving program correctness is partially automated by the theorem prover Z3 (see [1]).

In our opinion, the significant difference between the Lingua project and Dafny is such that our construction

rules are proven sound on the ground of a denotational model of Lingua-V, rather than being assumed to be so.

More technical differences are summarized in the table below.

CONCEPT LINGUA DAFNY

denotations The development of a many-sorted alge-
bra of denotations is the “founding step” in
designing Lingua.

The concept of denotations is neither
used nor even mentioned.

syntax Syntax is derived from an earlier con-
structed algebra of denotations in three
steps: the derivation of abstract syntax, of
concrete syntax, and of colloquial syntax.
The first two of them are many-sorted al-
gebras. All syntaxes are described by
equational grammars.

Syntax is defined by BNF equations and
is “final”, i.e., it corresponds to our collo-
quial syntax. The definition of syntax is
essentially the “founding step” of the lan-
guage.

semantics Abstract and concrete syntaxes are de-
fined in a way that guarantees the exist-
ence of (unique) homomorphisms into the
algebra of denotations. These homomor-
phisms are the denotational semantics of
Lingua. The semantics of the (final) collo-
quial syntax is a composition of a recov-
ery function that turns colloquial syntax
into concrete syntax and the semantics of
concrete syntax.

In the source report [11], only the syntax
is formally defined. Semantics is de-
scribed informally and may be guessed
to be implicit in Hoare-like proof rules.
Although the authors never explicitly
state this, they seem to regard these
rules as evident, thereby tacitly assum-
ing that the implementation (semantics)
of Dafny ensures their soundness.

values Typed data or objects. No such concepts are explicitly defined.

abstract errors All domains of values include abstract er-
rors, and all constructors “react” to them.
Besides, states may carry errors, and
therefore, the denotations of program
components also react to errors. The
mechanism for handling errors is formal-
ized in semantics.

We have not identified any comments
about errors.

types Finitistic structured elements that unam-
biguously identify sets of values called the
clans of types.

Informally understood as sets of values
plus corresponding constructors. There
are several categories of built-in types,
as well as mechanisms for creating
user-defined types. The description of
types mixes the syntax with an (infor-
mal) semantics of type- and value decla-
rations.

value expressions The denotations of value expressions are
partial state-to-value functions, and may

Value expressions are called right-hand-
side expressions and constitute a very
rich syntactic category. They are used
both in programs and in their

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 54

return errors as values. Expressions do
not generate side effects.

specifications. They may have side ef-
fects, e.g., if they include method calls.

reference expressions Their denotations are total functions from
states to references or errors.

They are called left-hand-side expres-
sions and are defined in Sec. 9.14 of
[11]. An example is a[i], where a is an
array. It might be interesting to analyze
them in the context of the de Bakker
paradox (Sec. 9.4.6.6 of [10]).

boolean expressions (BE) Their denotations are partial 3-valued
predicates based on McCarthy’s calculus.

No formal definition, but it is pointed out
that the evaluation of BE may generate
an error in a way that corresponds to
McCarthy’s calculus.

type expressions Their denotations are total functions from
states to types or errors.

Not explicitly defined.

conditions Syntactically constitute a superset of bool-
ean expressions, but semantically are
based on Kleene’s rather than McCarthy’s
calculus.

One may guess that conditions are just
expressions with boolean values, alt-
hough not all such conditions may be
used in programs. This issue is techni-
cally complicated, and we did not have
the patience to thoroughly study it.

constants versus ghost
items

Constants have been introduced to de-
scribe the relationship between the initial
values of variables and their current val-
ues. They may be used to initialize varia-
bles, but beside that, only in non-algorith-
mic conditions.

Ghost items are not visible to a compiler
but are detected by a theorem prover.
Ghost items are used entirely in specifi-
cations.

constants Constants must be formally introduced
into Lingua. In our example, we only an-
nounced this decision.

Introduced as a particular case of varia-
bles called “constant variables”. Declar-
able.

metaprograms pre pr-con
 specified instruction
post po-con
Specified instructions may include asser-
tions.

Called just “programs”, but including the
same elements, although in a different
arrangement:
requires pr-con
assures po-con
 specified instruction

program validation

Correct metaprograms are built in a step-
wise way by sound construction rules.
Usually, an application of a rule requires
proving an implication concerning pro-
gram items (variables, types, methods,
etc.). During the development of pro-
grams, preconditions, postconditions and
specinstructions are constructed and
modified.

Developed specified programs are
proved correct by a theorem prover.
Programs may be built from other pro-
grams (lemmas), but — as far as we un-
derstood — when “a single” program is
developed, it is first developed (written)
as a whole, and then proved correct.

Andrzej Blikle – Investigations on the logical aspects of ecosystems for programmers in Lingua-V 55

8 References

[1] Bjørner Nikolaj, Moura (de) Leonardo, Nachmanson Lev, Wintersteiger Christoph, Programming Z3,

Microsoft Research

[2] Blikle Andrzej, Toward Mathematical Structured Programming, Formal Description of Programming

Concepts (Proc. IFIP Working Conf. St. Andrews, N.B. Canada 1977, E.J. Neuhold ed. pp. 183-2012,

North Holland, Amsterdam 1978

[3] Blikle Andrzej, On Correct Program Development, Proc. 4th Int. Conf. on Software Engineering, 1979

pp. 164-173

[4] Blikle Andrzej, On the Development of Correct Specified Programs, IEEE Transactions on Software

Engineering, SE-7 1981, pp. 519-527

[5] Blikle Andrzej, The Clean Termination of Iterative Programs, Acta Informatica, 16, 1981, pp. 199-217.

[6] Blikle Andrzej, Chrząstowski-Wachtel Piotr, Jabłonowski Janusz, and Tarlecki Andrzej, A Denotational

Engineering of Programming Languages, a book in progress, 2024, https://moznainaczej.com.pl/what-

has-been-done/the-book

[7] Dijkstra Edsger, W., A constructive approach to the problem of program correctness, BIT 8 (1968)

[8] Dijkstra Edsger, W., A Discipline of Programming, Prentice-Hall, Inc., Englewood Cliffs, New Jersey,

1976

[9] Leino K. Rustan M., This is Boogie 2, Manuscript KRML 178, working draft 24 June 2008,

https://www.microsoft.com/en-us/research/project/boogie-an-intermediate-verification-language/publi-

cations/

[10] Leino K. Rustan M., Program Proofs, MIT Press 2023,

[11] Leino K. Rustan M., Cok David R., and the Dafny contributors, Dafny Reference Manual, August 29,

2024, http://dafny.org/dafny/DafnyRef/DafnyRef ,

[12] Getting Started with Dafny: A Guide, https://dafny.org/latest/OnlineTutorial/guide

[13] Mostowski, A., Logika matematyczna, Monografie Matematyczne 1948

[14] Rasiowa H., Sikorski R., The mathematics of metamathematics, Państwowe Wydawnictwo Naukowe,

Warsaw 1963

[15] Sierpiński Wacław, Arytmetyka teoretyczna, Państwowe Wydawnictwo Naukowe, Warszawa 1955

https://moznainaczej.com.pl/what-has-been-done/the-book
https://moznainaczej.com.pl/what-has-been-done/the-book
https://www.microsoft.com/en-us/research/project/boogie-an-intermediate-verification-language/publications/
https://www.microsoft.com/en-us/research/project/boogie-an-intermediate-verification-language/publications/
http://dafny.org/dafny/DafnyRef/DafnyRef
https://dafny.org/latest/OnlineTutorial/guide

